結果
問題 | No.2305 [Cherry 5th Tune N] Until That Day... |
ユーザー | Kazun |
提出日時 | 2022-10-27 20:02:14 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 3,285 ms / 10,000 ms |
コード長 | 23,679 bytes |
コンパイル時間 | 529 ms |
コンパイル使用メモリ | 82,176 KB |
実行使用メモリ | 130,768 KB |
最終ジャッジ日時 | 2024-12-15 19:19:35 |
合計ジャッジ時間 | 14,530 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 50 ms
58,368 KB |
testcase_01 | AC | 49 ms
57,964 KB |
testcase_02 | AC | 159 ms
77,592 KB |
testcase_03 | AC | 139 ms
77,600 KB |
testcase_04 | AC | 155 ms
77,540 KB |
testcase_05 | AC | 156 ms
77,788 KB |
testcase_06 | AC | 134 ms
77,872 KB |
testcase_07 | AC | 178 ms
78,372 KB |
testcase_08 | AC | 177 ms
79,256 KB |
testcase_09 | AC | 175 ms
79,164 KB |
testcase_10 | AC | 177 ms
79,140 KB |
testcase_11 | AC | 3,225 ms
130,664 KB |
testcase_12 | AC | 3,122 ms
130,768 KB |
testcase_13 | AC | 494 ms
79,632 KB |
testcase_14 | AC | 488 ms
79,284 KB |
testcase_15 | AC | 171 ms
78,336 KB |
testcase_16 | AC | 155 ms
78,480 KB |
testcase_17 | AC | 151 ms
77,224 KB |
testcase_18 | AC | 3,285 ms
130,100 KB |
testcase_19 | AC | 72 ms
71,808 KB |
testcase_20 | AC | 70 ms
70,784 KB |
ソースコード
class Modulo_Polynomial(): __slots__=("Poly", "max_degree") def __init__(self, Poly=[], max_degree=2*10**5): """ 多項式の定義 P: 係数のリスト max_degree ※Mod: 法はグローバル変数から指定 """ if Poly: self.Poly=[p%Mod for p in Poly[:max_degree]] else: self.Poly=[0] self.max_degree=max_degree def __str__(self): return str(self.Poly) def __repr__(self): return self.__str__() def __iter__(self): yield from self.Poly #= def __eq__(self,other): from itertools import zip_longest return all([a==b for a,b in zip_longest(self.Poly,other.Poly,fillvalue=0)]) #+,- def __pos__(self): return self def __neg__(self): return self.scale(-1) #items def __getitem__(self, index): if isinstance(index, slice): return Modulo_Polynomial(self.Poly[index], self.max_degree) else: if index<0: raise IndexError("index is negative (index: {})".format(index)) elif index>=len(self.Poly): return 0 else: return self.Poly[index] def __setitem__(self, index, value): if index<0: raise IndexError("index is negative (index: {})".format(index)) elif index>=self.max_degree: return if index>=len(self.Poly): self.Poly+=[0]*(index-len(self.Poly)+1) self.Poly[index]=value%Mod #Boole def __bool__(self): return any(self.Poly) #簡略化 def reduce(self): """ 高次の 0 を切り捨て """ P=self.Poly for d in range(len(P)-1,-1,-1): if P[d]: break self.resize(d+1) return #シフト def __lshift__(self,other): if other<0: return self>>(-other) if other>self.max_degree: return Modulo_Polynomial([0],self.max_degree) G=[0]*other+self.Poly return Modulo_Polynomial(G,self.max_degree) def __rshift__(self,other): if other<0: return self<<(-other) return Modulo_Polynomial(self.Poly[other:],self.max_degree) #次数 def degree(self): P=self.Poly for d in range(len(self.Poly)-1,-1,-1): if P[d]: return d return -float("inf") #加法 def __add__(self,other): P=self; Q=other if Q.__class__==Modulo_Polynomial: N=min(P.max_degree,Q.max_degree) A=P.Poly; B=Q.Poly else: N=P.max_degree A=P.Poly; B=Q return Modulo_Polynomial(Calc.Add(A,B),N) def __radd__(self,other): return self+other #減法 def __sub__(self,other): P=self; Q=other if Q.__class__==Modulo_Polynomial: N=min(P.max_degree,Q.max_degree) A=P.Poly; B=Q.Poly else: N=P.max_degree A=P.Poly; B=Q return Modulo_Polynomial(Calc.Sub(A,B),N) def __rsub__(self,other): return (-self)+other #乗法 def __mul__(self,other): P=self Q=other if Q.__class__==Modulo_Polynomial: a=b=0 for x in P.Poly: if x: a+=1 for y in Q.Poly: if y: b+=1 if a>b: P,Q=Q,P P.reduce();Q.reduce() U,V=P.Poly,Q.Poly M=min(P.max_degree,Q.max_degree) if a<2*P.max_degree.bit_length(): B=[0]*(len(U)+len(V)-1) for i in range(len(U)): if U[i]: for j in range(len(V)): B[i+j]+=U[i]*V[j] if B[i+j]>Mod: B[i+j]-=Mod else: B=Calc.Convolution(U,V)[:M] B=Modulo_Polynomial(B,M) B.reduce() return B else: return self.scale(other) def __rmul__(self,other): return self.scale(other) #除法 def __floordiv__(self,other): if not other: raise ZeroDivisionError if isinstance(other,int): return self/other self.reduce() other.reduce() return Modulo_Polynomial(Calc.Floor_Div(self.Poly, other.Poly), max(self.max_degree, other.max_degree)) def __rfloordiv__(self,other): if not self: raise ZeroDivisionError if isinstance(other,int): return Modulo_Polynomial([],self.max_degree) #剰余 def __mod__(self,other): if not other: return ZeroDivisionError self.reduce(); other.reduce() r=Modulo_Polynomial(Calc.Mod(self.Poly, other.Poly), min(self.max_degree, other.max_degree)) r.reduce() return r def __rmod__(self,other): if not self: raise ZeroDivisionError r=other-(other//self)*self r.reduce() return r def __divmod__(self,other): q=self//other r=self-q*other; r.reduce() return (q,r) #累乗 def __pow__(self,other): if other.__class__==int: n=other m=abs(n) Q=self A=Modulo_Polynomial([1],self.max_degree) while m>0: if m&1: A*=Q m>>=1 Q*=Q if n>=0: return A else: return A.inverse() else: P=Log(self) return Exp(P*other) #逆元 def inverse(self, deg=None): assert self.Poly[0], "定数項が0" if deg==None: deg=self.max_degree return Modulo_Polynomial(Calc.Inverse(self.Poly, deg), self.max_degree) #除法 def __truediv__(self,other): if isinstance(other, Modulo_Polynomial): if Calc.is_sparse(other.Poly): d,f=Calc.coefficients_list(other.Poly) K=len(d) H=[0]*self.max_degree alpha=pow(other[0], Mod-2, Mod) H[0]=alpha*self[0]%Mod for i in range(1, self.max_degree): c=0 for j in range(1, K): if d[j]<=i: c+=f[j]*H[i-d[j]]%Mod else: break c%=Mod H[i]=alpha*(self[i]-c)%Mod H=Modulo_Polynomial(H, min(self.max_degree, other.max_degree)) return H else: return self*other.inverse() else: return pow(other,Mod-2,Mod)*self def __rtruediv__(self,other): return other*self.inverse() #スカラー倍 def scale(self, s): return Modulo_Polynomial(Calc.Times(self.Poly,s),self.max_degree) #最高次の係数 def leading_coefficient(self): for x in self.Poly[::-1]: if x: return x return 0 def censor(self, N=-1, Return=False): """ N 次以上の係数をカット """ if N==-1: N=self.max_degree N=min(N, self.max_degree) if Return: return Modulo_Polynomial(self.Poly[:N],self.max_degree) else: self.Poly=self.Poly[:N] def resize(self, N, Return=False): """ 強制的に Poly の配列の長さを N にする. """ N=min(N, self.max_degree) P=self if Return: if len(P.Poly)>N: E=P.Poly[:N] else: E=P.Poly+[0]*(N-len(P.Poly)) return Modulo_Polynomial(E,P.max_degree) else: if len(P.Poly)>N: del P.Poly[N:] else: P.Poly+=[0]*(N-len(P.Poly)) #代入 def substitution(self, a): """ a を (形式的に) 代入した値を求める. a: int """ y=0 t=1 for p in self.Poly: y=(y+p*t)%Mod t=(t*a)%Mod return y #================================================= class Calculator: def __init__(self): self.primitive=self.__primitive_root() self.__build_up() def __primitive_root(self): p=Mod if p==2: return 1 if p==998244353: return 3 if p==10**9+7: return 5 if p==163577857: return 23 if p==167772161: return 3 if p==469762049: return 3 fac=[] q=2 v=p-1 while v>=q*q: e=0 while v%q==0: e+=1 v//=q if e>0: fac.append(q) q+=1 if v>1: fac.append(v) g=2 while g<p: if pow(g,p-1,p)!=1: return None flag=True for q in fac: if pow(g,(p-1)//q,p)==1: flag=False break if flag: return g g+=1 #参考元: https://judge.yosupo.jp/submission/72676 def __build_up(self): rank2=(~(Mod-1)&(Mod-2)).bit_length() root=[0]*(rank2+1); iroot=[0]*(rank2+1) rate2=[0]*max(0, rank2-1); irate2=[0]*max(0, rank2-1) rate3=[0]*max(0, rank2-2); irate3=[0]*max(0, rank2-2) root[-1]=pow(self.primitive, (Mod-1)>>rank2, Mod) iroot[-1]=pow(root[-1], Mod-2, Mod) for i in range(rank2)[::-1]: root[i]=root[i+1]*root[i+1]%Mod iroot[i]=iroot[i+1]*iroot[i+1]%Mod prod=iprod=1 for i in range(rank2-1): rate2[i]=root[i+2]*prod%Mod irate2[i]=iroot[i+2]*prod%Mod prod*=iroot[i+2]; prod%=Mod iprod*=root[i+2]; iprod%=Mod prod=iprod = 1 for i in range(rank2-2): rate3[i]=root[i + 3]*prod%Mod irate3[i]=iroot[i + 3]*iprod%Mod prod*=iroot[i + 3]; prod%=Mod iprod*=root[i + 3]; iprod%=Mod self.root=root; self.iroot=iroot self.rate2=rate2; self.irate2=irate2 self.rate3=rate3; self.irate3=irate3 def Add(self, A, B): """ 必要ならば末尾に元を追加して, [A[i]+B[i]] を求める. """ if type(A)==int: A=[A] if type(B)==int: B=[B] m=min(len(A), len(B)) C=[(A[i]+B[i])%Mod for i in range(m)] C.extend(A[m:]) C.extend(B[m:]) return C def Sub(self, A, B): """ 必要ならば末尾に元を追加して, [A[i]-B[i]] を求める. """ if type(A)==int: A=[A] if type(B)==int: B=[B] m=min(len(A), len(B)) C=[0]*m C=[(A[i]-B[i])%Mod for i in range(m)] C.extend(A[m:]) C.extend([-b%Mod for b in B[m:]]) return C def Times(self,A, k): """ [k*A[i]] を求める. """ return [k*a%Mod for a in A] #参考元 https://judge.yosupo.jp/submission/72676 def NTT(self, A): """ A に Mod を法とする数論変換を施す ※ Mod はグローバル変数から指定 References: https://github.com/atcoder/ac-library/blob/master/atcoder/convolution.hpp https://judge.yosupo.jp/submission/72676 """ N=len(A) H=(N-1).bit_length() l=0 I=self.root[2] rate2=self.rate2; rate3=self.rate3 while l<H: if H-l==1: p=1<<(H-l-1) rot=1 for s in range(1<<l): offset=s<<(H-l) for i in range(p): x=A[i+offset]; y=A[i+offset+p]*rot%Mod A[i+offset]=(x+y)%Mod A[i+offset+p]=(x-y)%Mod if s+1!=1<<l: rot*=rate2[(~s&-~s).bit_length()-1] rot%=Mod l+=1 else: p=1<<(H-l-2) rot=1 for s in range(1<<l): rot2=rot*rot%Mod rot3=rot2*rot%Mod offset=s<<(H-l) for i in range(p): a0=A[i+offset] a1=A[i+offset+p]*rot a2=A[i+offset+2*p]*rot2 a3=A[i+offset+3*p]*rot3 alpha=(a1-a3)%Mod*I A[i+offset]=(a0+a2+a1+a3)%Mod A[i+offset+p]=(a0+a2-a1-a3)%Mod A[i+offset+2*p]=(a0-a2+alpha)%Mod A[i+offset+3*p]=(a0-a2-alpha)%Mod if s+1!=1<<l: rot*=rate3[(~s&-~s).bit_length()-1] rot%=Mod l+=2 #参考元 https://judge.yosupo.jp/submission/72676 def Inverse_NTT(self, A): """ A を Mod を法とする逆数論変換を施す ※ Mod はグローバル変数から指定 References: https://github.com/atcoder/ac-library/blob/master/atcoder/convolution.hpp https://judge.yosupo.jp/submission/72676 """ N=len(A) H=(N-1).bit_length() l=H J=self.iroot[2] irate2=self.rate2; irate3=self.irate3 while l: if l==1: p=1<<(H-l) irot=1 for s in range(1<<(l-1)): offset=s<<(H-l+1) for i in range(p): x=A[i+offset]; y=A[i+offset+p] A[i+offset]=(x+y)%Mod A[i+offset+p]=(x-y)*irot%Mod if s+1!=1<<(l-1): irot*=irate2[(~s&-~s).bit_length()-1] irot%=Mod l-=1 else: p=1<<(H-l) irot=1 for s in range(1<<(l-2)): irot2=irot*irot%Mod irot3=irot2*irot%Mod offset=s<<(H-l+2) for i in range(p): a0=A[i+offset] a1=A[i+offset+p] a2=A[i+offset+2*p] a3=A[i+offset+3*p] beta=(a2-a3)*J%Mod A[i+offset]=(a0+a1+a2+a3)%Mod A[i+offset+p]=(a0-a1+beta)*irot%Mod A[i+offset+2*p]=(a0+a1-a2-a3)*irot2%Mod A[i+offset+3*p]=(a0-a1-beta)*irot3%Mod if s+1!=1<<(l-2): irot*=irate3[(~s&-~s).bit_length()-1] irot%=Mod l-=2 N_inv=pow(N,Mod-2,Mod) for i in range(N): A[i]=N_inv*A[i]%Mod def non_zero_count(self, A): """ A にある非零の数を求める. """ return len(A)-A.count(0) def is_sparse(self, A, K=None): """ A が疎かどうかを判定する. """ if K==None: K=25 return self.non_zero_count(A)<=K def coefficients_list(self, A): """ A にある非零のリストを求める. output: ( [d[0], ..., d[k-1] ], [f[0], ..., f[k-1] ]) : a[d[j]]=f[j] であることを表している. """ f=[]; d=[] for i in range(len(A)): if A[i]: d.append(i) f.append(A[i]) return d,f def Convolution(self, A, B): """ A, B で Mod を法とする畳み込みを求める. ※ Mod はグローバル変数から指定 """ if not A or not B: return [] N=len(A) M=len(B) L=M+N-1 if min(N,M)<=50: if N<M: N,M=M,N A,B=B,A C=[0]*L for i in range(N): for j in range(M): C[i+j]+=A[i]*B[j] C[i+j]%=Mod return C H=L.bit_length() K=1<<H A=A+[0]*(K-N) B=B+[0]*(K-M) self.NTT(A) self.NTT(B) for i in range(K): A[i]=A[i]*B[i]%Mod self.Inverse_NTT(A) return A[:L] def Autocorrelation(self, A): """ A 自身に対して,Mod を法とする畳み込みを求める. ※ Mod はグローバル変数から指定 """ N=len(A) L=2*N-1 if N<=50: C=[0]*L for i in range(N): for j in range(N): C[i+j]+=A[i]*A[j] C[i+j]%=Mod return C H=L.bit_length() K=1<<H A=A+[0]*(K-N) self.NTT(A) for i in range(K): A[i]=A[i]*A[i]%Mod self.Inverse_NTT(A) return A[:L] def Multiple_Convolution(self, *A): """ A=(A[0], A[1], ..., A[d-1]) で Mod を法とする畳み込みを行う. """ from collections import deque if not A: return [1] Q=deque(list(range(len(A)))) A=list(A) while len(Q)>=2: i=Q.popleft(); j=Q.popleft() A[i]=self.Convolution(A[i], A[j]) A[j]=None Q.append(i) i=Q.popleft() return A[i] def Inverse(self, F, length=None): if length==None: M=len(F) else: M=length if M<=0: return [] if self.is_sparse(F): """ 愚直に漸化式を用いて求める. 計算量: F にある係数が非零の項の個数を K, 求める最大次数を N として, O(NK) 時間 """ d,f=self.coefficients_list(F) G=[0]*M alpha=pow(F[0], Mod-2, Mod) G[0]=alpha for i in range(1, M): for j in range(1, len(d)): if d[j]<=i: G[i]+=f[j]*G[i-d[j]]%Mod else: break G[i]%=Mod G[i]=(-alpha*G[i])%Mod del G[M:] else: """ FFTの理論を応用して求める. 計算量: 求めたい項の個数をNとして, O(N log N) Reference: https://judge.yosupo.jp/submission/42413 """ N=len(F) r=pow(F[0],Mod-2,Mod) m=1 G=[r] while m<M: A=F[:min(N, 2*m)]; A+=[0]*(2*m-len(A)) B=G.copy(); B+=[0]*(2*m-len(B)) Calc.NTT(A); Calc.NTT(B) for i in range(2*m): A[i]=A[i]*B[i]%Mod Calc.Inverse_NTT(A) A=A[m:]+[0]*m Calc.NTT(A) for i in range(2*m): A[i]=-A[i]*B[i]%Mod Calc.Inverse_NTT(A) G.extend(A[:m]) m<<=1 G=G[:M] return G def Floor_Div(self, F, G): assert F[-1] assert G[-1] F_deg=len(F)-1 G_deg=len(G)-1 if F_deg<G_deg: return [] m=F_deg-G_deg+1 return self.Convolution(F[::-1], Calc.Inverse(G[::-1],m))[m-1::-1] def Mod(self, F, G): while F and F[-1]==0: F.pop() while G and G[-1]==0: G.pop() if not F: return [] return Calc.Sub(F, Calc.Convolution(Calc.Floor_Div(F,G),G)) def Polynominal_Coefficient(P,Q,N): """ [X^N] P/Q を求める. References: http://q.c.titech.ac.jp/docs/progs/polynomial_division.html https://arxiv.org/abs/2008.08822 https://arxiv.org/pdf/2008.08822.pdf """ P=P.Poly.copy(); Q=Q.Poly.copy() m=1<<((len(Q)-1).bit_length()) P.extend([0]*(2*m-len(P))) Q.extend([0]*(2*m-len(Q))) while N: R=[Q[i] if i&1==0 else -Q[i] for i in range(2*m)] Calc.NTT(P); Calc.NTT(Q); Calc.NTT(R) for i in range(2*m): P[i]*=R[i]; P[i]%=Mod Q[i]*=R[i]; Q[i]%=Mod Calc.Inverse_NTT(P); Calc.Inverse_NTT(Q) if N&1==0: for i in range(m): P[i]=P[2*i] else: for i in range(m): P[i]=P[2*i+1] for i in range(m): Q[i]=Q[2*i] for i in range(m,2*m): P[i]=Q[i]=0 N>>=1 if Q[0]==1: return P[0] else: return P[0]*pow(Q[0],Mod-2,Mod)%Mod def Nth_Term_of_Linearly_Recurrent_Sequence(A, C, N, offset=0): """ A[i]=C[0]*A[i-1]+C[1]*A[i-2]+...+C[d-1]*A[i-d] で表される数列 (A[i]) の第 N 項を求める. A=(A[0], ..., A[d-1]): 最初の d 項 C=(C[0], ..., C[d-1]): 線形漸化式 N: 求める項数 offset: ずらす項数 (初項が第 offset 項になる) """ assert len(A)==len(C) d=len(A) N-=offset if N<0: return 0 elif N<d: return A[N]%Mod A=Modulo_Polynomial(A,d+1) Q=Modulo_Polynomial([-C[i-1] if i else 1 for i in range(d+1)], d+1) P=A*Q; P[d]=0 return Polynominal_Coefficient(P,Q,N) #================================================== def solve(): global Mod,Calc Mod=998244353; Calc=Calculator() N=int(input()) P=[-1]+list(map(int,input().split())) W=[-1]+list(map(int,input().split())) W_sum=[0]*(N+1) for i in range(1,N+1): W_sum[P[i]]+=W[i] B=[0]*(N+1); B[0]=1 dep=[0]*(N+1) leaf=[True]*(N+1) for i in range(1, N+1): coef=W[i]*pow(W_sum[P[i]], Mod-2, Mod) B[i]=B[P[i]]*coef%Mod dep[i]=dep[P[i]]+1 leaf[P[i]]=False D=max(dep) C=[0]*(D+2) for i in range(N+1): if leaf[i]: C[dep[i]]+=B[i] for d in range(D+1,-1,-1): if d: C[d]-=C[d-1] else: C[d]+=1 X=[1 if t==0 else 0 for t in range(-(D+1),0+1)] # 本計算 Q=int(input()) Ans=[0]*Q for q in range(Q): A,K=map(int,input().split()) Ans[q]=Nth_Term_of_Linearly_Recurrent_Sequence(X, C, K-dep[A], -(D+1))*B[A]%Mod if A==0: Ans[q]=(Ans[q]-1)%Mod return Ans #================================================== import sys input=sys.stdin.readline write=sys.stdout.write print(*solve(), sep="\n")