結果
| 問題 |
No.458 異なる素数の和
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-10-28 08:45:23 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 1,368 ms / 2,000 ms |
| コード長 | 4,127 bytes |
| コンパイル時間 | 170 ms |
| コンパイル使用メモリ | 81,988 KB |
| 実行使用メモリ | 437,792 KB |
| 最終ジャッジ日時 | 2024-07-05 15:14:25 |
| 合計ジャッジ時間 | 12,358 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 28 |
ソースコード
###N以下の素数列挙###
import math
def sieve_of_eratosthenes(n):
prime = [True for i in range(n+1)]
prime[0] = False
prime[1] = False
sqrt_n = math.ceil(math.sqrt(n))
for i in range(2, sqrt_n+1):
if prime[i]:
for j in range(2*i, n+1, i):
prime[j] = False
return prime
###N以上K以下の素数列挙###
import math
def segment_sieve(a, b):
sqrt_b = math.ceil(math.sqrt(b))
prime_small = [True for i in range(sqrt_b)]
prime = [True for i in range(b-a+1)]
for i in range(2, sqrt_b):
if prime_small[i]:
for j in range(2*i, sqrt_b, i):
prime_small[j] = False
for j in range((a+i-1)//i*i, b+1, i):
#print('j: ', j)
prime[j-a] = False
return prime
###n進数から10進数変換###
def base_10(num_n,n):
num_10 = 0
for s in str(num_n):
num_10 *= n
num_10 += int(s)
return num_10
###10進数からn進数変換###
def base_n(num_10,n):
str_n = ''
while num_10:
if num_10%n>=10:
return -1
str_n += str(num_10%n)
num_10 //= n
return int(str_n[::-1])
###複数の数の最大公約数、最小公倍数###
from functools import reduce
# 最大公約数
def gcd_list(num_list: list) -> int:
return reduce(gcd, num_list)
# 最小公倍数
def lcm_base(x: int, y: int) -> int:
return (x * y) // gcd(x, y)
def lcm_list(num_list: list):
return reduce(lcm_base, num_list, 1)
###約数列挙###
def make_divisors(n):
lower_divisors, upper_divisors = [], []
i = 1
while i * i <= n:
if n % i == 0:
lower_divisors.append(i)
if i != n // i:
upper_divisors.append(n//i)
i += 1
return lower_divisors + upper_divisors[::-1]
###順列###
def nPr(n, r):
npr = 1
for i in range(n, n-r, -1):
npr *= i
return npr
###組合せ###
def nCr(n, r):
factr = 1
r = min(r, n - r)
for i in range(r, 1, -1):
factr *= i
return nPr(n, r)/factr
###組合せMOD###
def comb(n,k):
nCk = 1
MOD = 10**9+7
for i in range(n-k+1, n+1):
nCk *= i
nCk %= MOD
for i in range(1,k+1):
nCk *= pow(i,MOD-2,MOD)
nCk %= MOD
return nCk
import sys, re
from fractions import Fraction
from math import ceil, floor, sqrt, pi, factorial, gcd
from copy import deepcopy
from collections import Counter, deque, defaultdict
from heapq import heapify, heappop, heappush
from itertools import accumulate, product, combinations, combinations_with_replacement, permutations
from bisect import bisect, bisect_left, bisect_right
from functools import reduce
from decimal import Decimal, getcontext, ROUND_HALF_UP
def i_input(): return int(input())
def i_map(): return map(int, input().split())
def i_list(): return list(i_map())
def i_row(N): return [i_input() for _ in range(N)]
def i_row_list(N): return [i_list() for _ in range(N)]
def s_input(): return input()
def s_map(): return input().split()
def s_list(): return list(s_map())
def s_row(N): return [s_input for _ in range(N)]
def s_row_str(N): return [s_list() for _ in range(N)]
def s_row_list(N): return [list(s_input()) for _ in range(N)]
def lcm(a, b): return a * b // gcd(a, b)
def get_distance(x1, y1, x2, y2):
d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
return d
def rotate(table):
n_fild = []
for x in zip(*table[::-1]):
n_fild.append(x)
return n_fild
sys.setrecursionlimit(10 ** 7)
INF = float('inf')
MOD = 10 ** 9 + 7
MOD2 = 998244353
###関数コピーしたか?###
def main():
N = int(input())
nums = sieve_of_eratosthenes(N)
lines = []
for i in range(N+1):
if nums[i]:
lines.append(i)
ll = len(lines)
dp = [[-1] * (N+1) for i in range(ll+1)]
dp[0][0] = 0
for i in range(ll):
p = lines[i]
for j in range(N+1):
if dp[i][j] == -1:
continue
if j + p <= N:
dp[i+1][j+p] = max(dp[i+1][j+p], dp[i][j]+1)
dp[i+1][j] = max(dp[i+1][j], dp[i][j])
print(dp[ll][N])
#print(dp)
if __name__ == '__main__':
main()