結果

問題 No.458 異なる素数の和
ユーザー McGregorshMcGregorsh
提出日時 2022-10-28 08:45:23
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,368 ms / 2,000 ms
コード長 4,127 bytes
コンパイル時間 170 ms
コンパイル使用メモリ 81,988 KB
実行使用メモリ 437,792 KB
最終ジャッジ日時 2024-07-05 15:14:25
合計ジャッジ時間 12,358 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 141 ms
89,380 KB
testcase_01 AC 494 ms
175,232 KB
testcase_02 AC 610 ms
220,800 KB
testcase_03 AC 225 ms
106,608 KB
testcase_04 AC 237 ms
106,368 KB
testcase_05 AC 1,170 ms
378,076 KB
testcase_06 AC 611 ms
198,324 KB
testcase_07 AC 142 ms
89,600 KB
testcase_08 AC 1,174 ms
381,348 KB
testcase_09 AC 164 ms
89,680 KB
testcase_10 AC 133 ms
88,832 KB
testcase_11 AC 1,368 ms
437,792 KB
testcase_12 AC 138 ms
88,832 KB
testcase_13 AC 133 ms
89,344 KB
testcase_14 AC 133 ms
88,960 KB
testcase_15 AC 132 ms
89,600 KB
testcase_16 AC 182 ms
89,768 KB
testcase_17 AC 138 ms
89,256 KB
testcase_18 AC 139 ms
89,108 KB
testcase_19 AC 136 ms
89,072 KB
testcase_20 AC 144 ms
89,344 KB
testcase_21 AC 133 ms
89,176 KB
testcase_22 AC 137 ms
89,152 KB
testcase_23 AC 137 ms
89,124 KB
testcase_24 AC 137 ms
89,216 KB
testcase_25 AC 132 ms
89,080 KB
testcase_26 AC 134 ms
89,472 KB
testcase_27 AC 557 ms
198,216 KB
testcase_28 AC 1,191 ms
430,060 KB
testcase_29 AC 153 ms
89,856 KB
testcase_30 AC 396 ms
152,704 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

###N以下の素数列挙###

import math 
def sieve_of_eratosthenes(n):
	  prime = [True for i in range(n+1)]
	  prime[0] = False
	  prime[1] = False
	  
	  sqrt_n = math.ceil(math.sqrt(n))
	  for i in range(2, sqrt_n+1):
	  	  if prime[i]:
	  	  	  for j in range(2*i, n+1, i):
	  	  	  	  prime[j] = False
	  return prime


###N以上K以下の素数列挙###

import math

def segment_sieve(a, b):
	  sqrt_b = math.ceil(math.sqrt(b))
	  prime_small = [True for i in range(sqrt_b)]
	  prime = [True for i in range(b-a+1)]
	  
	  for i in range(2, sqrt_b):
	  	  if prime_small[i]:
	  	  	  for j in range(2*i, sqrt_b, i):
	  	  	  	  prime_small[j] = False
	  	  	  for j in range((a+i-1)//i*i, b+1, i):
	  	  	  	  #print('j: ', j)
	  	  	  	  prime[j-a] = False
	  return prime


###n進数から10進数変換###

def base_10(num_n,n):
	  num_10 = 0
	  for s in str(num_n):
	  	  num_10 *= n
	  	  num_10 += int(s)
	  return num_10


###10進数からn進数変換###

def base_n(num_10,n):
	  str_n = ''
	  while num_10:
	  	  if num_10%n>=10:
	  	  	  return -1
	  	  str_n += str(num_10%n)
	  	  num_10 //= n
	  return int(str_n[::-1])


###複数の数の最大公約数、最小公倍数###

from functools import reduce

# 最大公約数
def gcd_list(num_list: list) -> int:
	  return reduce(gcd, num_list)

# 最小公倍数
def lcm_base(x: int, y: int) -> int:
	  return (x * y) // gcd(x, y)
def lcm_list(num_list: list):
	  return reduce(lcm_base, num_list, 1)


###約数列挙###

def make_divisors(n):
	  lower_divisors, upper_divisors = [], []
	  i = 1
	  while i * i <= n:
	  	  if n % i == 0:
	  	  	  lower_divisors.append(i)
	  	  	  if i != n // i:
	  	  	  	  upper_divisors.append(n//i)
	  	  i += 1
	  return lower_divisors + upper_divisors[::-1]


###順列###

def nPr(n, r):
	  npr = 1
	  for i in range(n, n-r, -1):
	  	  npr *= i
	  return npr


###組合せ###

def nCr(n, r):
	  factr = 1
	  r = min(r, n - r)
	  for i in range(r, 1, -1):
	  	  factr *= i
	  return nPr(n, r)/factr


###組合せMOD###

def comb(n,k):
    nCk = 1
    MOD = 10**9+7

    for i in range(n-k+1, n+1):
        nCk *= i
        nCk %= MOD

    for i in range(1,k+1):
        nCk *= pow(i,MOD-2,MOD)
        nCk %= MOD
    return nCk


import sys, re
from fractions import Fraction
from math import ceil, floor, sqrt, pi, factorial, gcd
from copy import deepcopy
from collections import Counter, deque, defaultdict
from heapq import heapify, heappop, heappush
from itertools import accumulate, product, combinations, combinations_with_replacement, permutations
from bisect import bisect, bisect_left, bisect_right
from functools import reduce
from decimal import Decimal, getcontext, ROUND_HALF_UP
def i_input(): return int(input())
def i_map(): return map(int, input().split())
def i_list(): return list(i_map())
def i_row(N): return [i_input() for _ in range(N)]
def i_row_list(N): return [i_list() for _ in range(N)]
def s_input(): return input()
def s_map(): return input().split()
def s_list(): return list(s_map())
def s_row(N): return [s_input for _ in range(N)]
def s_row_str(N): return [s_list() for _ in range(N)]
def s_row_list(N): return [list(s_input()) for _ in range(N)]
def lcm(a, b): return a * b // gcd(a, b)
def get_distance(x1, y1, x2, y2):
	  d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
	  return d
def rotate(table):
   	  n_fild = []
   	  for x in zip(*table[::-1]):
   	  	  n_fild.append(x)
   	  return n_fild
sys.setrecursionlimit(10 ** 7)
INF = float('inf')
MOD = 10 ** 9 + 7
MOD2 = 998244353

###関数コピーしたか?###
def main():
   
   N = int(input())
   nums = sieve_of_eratosthenes(N)
   lines = []
   for i in range(N+1):
   	  if nums[i]:
   	  	  lines.append(i)
   ll = len(lines)
   dp = [[-1] * (N+1) for i in range(ll+1)]
   dp[0][0] = 0
   
   for i in range(ll):
   	  p = lines[i]
   	  for j in range(N+1):
   	  	  if dp[i][j] == -1:
   	  	  	  continue
   	  	  if j + p <= N:
   	  	  	  dp[i+1][j+p] = max(dp[i+1][j+p], dp[i][j]+1)
   	  	  dp[i+1][j] = max(dp[i+1][j], dp[i][j])
   print(dp[ll][N])
   #print(dp)
   
if __name__ == '__main__':
    main()

0