結果

問題 No.2113 Distance Sequence 1.5
ユーザー packer_jppacker_jp
提出日時 2022-10-28 22:33:40
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 11,387 bytes
コンパイル時間 2,083 ms
コンパイル使用メモリ 198,896 KB
最終ジャッジ日時 2025-02-08 14:45:28
ジャッジサーバーID
(参考情報)
judge2 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 21
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define all(a) begin(a), end(a)
#define rall(a) rbegin(a), rend(a)
#define uniq(a) (a).erase(unique(all(a)), (a).end())
#define t0 first
#define t1 second
using ll = long long;
using ull = unsigned long long;
using pll = pair<ll, ll>;
using vll = vector<ll>;
constexpr double pi = 3.14159265358979323846;
constexpr ll dy[9] = {0, 1, 0, -1, 1, 1, -1, -1, 0};
constexpr ll dx[9] = {1, 0, -1, 0, 1, -1, -1, 1, 0};
constexpr ll sign(ll a) { return (a > 0) - (a < 0); }
constexpr ll fdiv(ll a, ll b) { return a / b - ((a ^ b) < 0 && a % b); }
constexpr ll cdiv(ll a, ll b) { return -fdiv(-a, b); }
constexpr ll pw(ll n) { return 1ll << n; }
constexpr ll flg(ll n) { return 63 - __builtin_clzll(n); }
constexpr ll clg(ll n) { return flg(n - 1) + 1; }
constexpr ll safemod(ll x, ll mod) { return (x % mod + mod) % mod; }
template <typename T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
template <typename T> constexpr T sq(const T &a) { return a * a; }
template <typename T, typename U> constexpr bool chmax(T &a, const U &b) { return a < b ? a = b, true : false; }
template <typename T, typename U> constexpr bool chmin(T &a, const U &b) { return a > b ? a = b, true : false; }
template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &a) {
os << "(" << a.first << ", " << a.second << ")";
return os;
}
template <typename T, typename U, typename V> ostream &operator<<(ostream &os, const tuple<T, U, V> &a) {
os << "(" << get<0>(a) << ", " << get<1>(a) << ", " << get<2>(a) << ")";
return os;
}
template <typename T> ostream &operator<<(ostream &os, const vector<T> &a) {
os << "(";
for (auto itr = a.begin(); itr != a.end(); ++itr) os << *itr << (next(itr) != a.end() ? ", " : "");
os << ")";
return os;
}
template <typename T> ostream &operator<<(ostream &os, const set<T> &a) {
os << "(";
for (auto itr = a.begin(); itr != a.end(); ++itr) os << *itr << (next(itr) != a.end() ? ", " : "");
os << ")";
return os;
}
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &a) {
os << "(";
for (auto itr = a.begin(); itr != a.end(); ++itr) os << *itr << (next(itr) != a.end() ? ", " : "");
os << ")";
return os;
}
template <typename T, typename U> ostream &operator<<(ostream &os, const map<T, U> &a) {
os << "(";
for (auto itr = a.begin(); itr != a.end(); ++itr) os << *itr << (next(itr) != a.end() ? ", " : "");
os << ")";
return os;
}
#ifdef ONLINE_JUDGE
#define dump(...) (void(0))
#else
void debug() { cerr << endl; }
template <typename Head, typename... Tail> void debug(Head &&head, Tail &&... tail) {
cerr << head;
if (sizeof...(Tail)) cerr << ", ";
debug(tail...);
}
#define dump(...) cerr << __LINE__ << ": " << #__VA_ARGS__ << " = ", debug(__VA_ARGS__)
#endif
struct rep {
struct itr {
ll v;
itr(ll v) : v(v) {}
void operator++() { ++v; }
ll operator*() const { return v; }
bool operator!=(itr i) const { return v < *i; }
};
ll l, r;
rep(ll l, ll r) : l(l), r(r) {}
rep(ll r) : rep(0, r) {}
itr begin() const { return l; };
itr end() const { return r; };
};
struct per {
struct itr {
ll v;
itr(ll v) : v(v) {}
void operator++() { --v; }
ll operator*() const { return v; }
bool operator!=(itr i) const { return v > *i; }
};
ll l, r;
per(ll l, ll r) : l(l), r(r) {}
per(ll r) : per(0, r) {}
itr begin() const { return r - 1; };
itr end() const { return l - 1; };
};
struct io_setup {
static constexpr int PREC = 20;
io_setup() {
cout << fixed << setprecision(PREC);
cerr << fixed << setprecision(PREC);
};
} iOS;
template <typename M> struct modint {
ll val;
modint(ll val = 0) : val(val >= 0 ? val % M::mod : (M::mod - (-val) % M::mod) % M::mod) {}
static ll mod() { return M::mod; }
modint inv() const {
ll a = val, b = M::mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return u;
}
modint pow(ll k) const {
modint ret = 1, mul = val;
while (k) {
if (k & 1) ret *= mul;
mul *= mul;
k >>= 1;
}
return ret;
}
modint &operator+=(const modint &a) {
if ((val += a.val) >= M::mod) val -= M::mod;
return *this;
}
modint &operator-=(const modint &a) {
if ((val += M::mod - a.val) >= M::mod) val -= M::mod;
return *this;
}
modint &operator*=(const modint &a) {
(val *= a.val) %= M::mod;
return *this;
}
modint &operator/=(const modint &a) { return *this *= a.inv(); }
modint operator+() const { return *this; }
modint operator-() const { return modint(-val); }
friend bool operator==(const modint &a, const modint &b) { return a.val == b.val; }
friend bool operator!=(const modint &a, const modint &b) { return rel_ops::operator!=(a, b); }
friend modint operator+(const modint &a, const modint &b) { return modint(a) += b; }
friend modint operator-(const modint &a, const modint &b) { return modint(a) -= b; }
friend modint operator*(const modint &a, const modint &b) { return modint(a) *= b; }
friend modint operator/(const modint &a, const modint &b) { return modint(a) /= b; }
friend istream &operator>>(istream &is, modint &a) {
ll val;
is >> val;
a = modint(val);
return is;
}
friend ostream &operator<<(ostream &os, const modint &a) { return os << a.val; }
};
struct _998244353 {
constexpr static ll mod = 998244353;
};
struct _1000000007 {
constexpr static ll mod = 1000000007;
};
using modint998244353 = modint<_998244353>;
using modint1000000007 = modint<_1000000007>;
struct arbitrary {
static ll mod;
};
ll arbitrary::mod;
template <typename V> struct fenwick_tree {
vector<V> data;
fenwick_tree(ll n) : data(n + 1, V()) {}
void add(ll i, const V &x) {
for (++i; i < (ll)data.size(); i += i & -i) data[i] += x;
}
V sum(ll i) const {
V ret = V();
for (; i > 0; i -= i & -i) ret += data[i];
return ret;
}
V sum(ll l, ll r) const { return sum(r) - sum(l); }
};
template <typename P> struct unionfind {
using V = typename P::V;
ll n;
vector<ll> ps;
vector<V> val;
unionfind(const vector<V> &val) : n(val.size()), ps(n, -1), val(val) {}
unionfind(ll n, const V &a = {}) : unionfind(vector<V>(n, a)) {}
ll find(ll i) {
if (ps[i] < 0) return i;
return ps[i] = find(ps[i]);
}
ll size(ll i) { return -ps[find(i)]; }
void unite(ll i, ll j) {
if ((i = find(i)) == (j = find(j))) return;
if (-ps[i] < -ps[j]) swap(i, j);
ps[i] += ps[j];
P::merge(val[i], val[j]);
ps[j] = i;
}
bool same(ll i, ll j) { return find(i) == find(j); }
V &operator[](ll i) { return val[find(i)]; }
vector<vector<ll>> groups() {
vector<vector<ll>> ret(n);
for (ll i : rep(n)) ret[find(i)].push_back(i);
ret.erase(remove_if(all(ret), [](const vector<ll> &v) { return v.empty(); }), ret.end());
return ret;
}
};
struct normal_uf {
using V = struct {};
static void merge(V &a, const V &b) {}
};
template <typename V> V xor64(V lb, V ub) {
static ull x = 88172645463325252ull;
x ^= x << 7;
return lb + (x ^= x >> 9) % (ub - lb);
}
template <typename V> vector<V> prime_factorize(V n) {
vector<V> ret;
for (V i = 2; i * i <= n; ++i) {
while (n % i == 0) {
ret.push_back(i);
n /= i;
}
}
if (n != 1) ret.push_back(n);
return ret;
}
template <typename F> ll bisect(ll ok, ll ng, F f) {
while (abs(ok - ng) > 1) {
ll mid = (ok + ng) / 2;
(f(mid) ? ok : ng) = mid;
}
return ok;
}
vector<bool> prime_table(ll n) {
vector<bool> ret(n + 1, true);
if (n >= 0) ret[0] = false;
if (n >= 1) ret[1] = false;
for (ll i = 2; i * i <= n; ++i) {
if (!ret[i]) continue;
for (ll j = i << 1; j <= n; j += i) ret[j] = false;
}
return ret;
}
struct rational {
long long num, den;
static long long gcd(long long a, long long b) {
if (a < 0) { a = -a; }
if (b < 0) { b = -b; }
while (b) { std::swap(a %= b, b); }
return a;
}
void reduce() {
long long g = gcd(num, den);
num /= g, den /= g;
}
rational(long long num_ = 0, long long den_ = 1, bool reduction = true) : num(num_), den(den_) {
if (reduction) { reduce(); }
if (den < 0) { num = -num, den = -den; }
}
rational &operator+=(const rational &a) {
num = num * a.den + a.num * den, den *= a.den;
reduce();
return *this;
}
rational &operator-=(const rational &a) { return *this += -a; }
rational &operator*=(const rational &a) {
num *= a.num, den *= a.den;
reduce();
return *this;
}
rational &operator/=(const rational &a) { return *this *= a.inv(); }
rational operator+() const { return *this; }
rational operator-() const { return rational(-num, den, false); }
friend bool operator==(const rational &a, const rational &b) { return a.num == b.num && a.den == b.den; }
friend bool operator!=(const rational &a, const rational &b) { return std::rel_ops::operator!=(a, b); }
friend bool operator<(const rational &a, const rational &b) { return a.num * b.den < b.num * a.den; }
friend bool operator>(const rational &a, const rational &b) { return std::rel_ops::operator>(a, b); }
friend bool operator<=(const rational &a, const rational &b) { return std::rel_ops::operator<=(a, b); }
friend bool operator>=(const rational &a, const rational &b) { return std::rel_ops::operator>=(a, b); }
friend rational operator+(rational a, const rational &b) { return a += b; }
friend rational operator-(rational a, const rational &b) { return a -= b; }
friend rational operator*(rational a, const rational &b) { return a *= b; }
friend rational operator/(rational a, const rational &b) { return a /= b; }
rational inv() const { return rational(den, num, false); }
rational pow(long long n) const {
if (n < 0) { return pow(-n).inv(); }
rational ret(1, 1, false), mul = *this;
while (n > 0) {
if (n & 1) { ret.num *= mul.num, ret.den *= mul.den; }
mul.num *= mul.num, mul.den *= mul.den;
n >>= 1;
}
return ret;
}
double to_double() const { return (double)num / den; }
friend std::istream &operator>>(std::istream &is, rational &rhs) {
long long n, d;
char s;
is >> n >> s >> d;
rhs = rational(n, d);
return is;
}
friend std::ostream &operator<<(std::ostream &os, const rational &rhs) { return os << rhs.num << " / " << rhs.den; }
};
int main() {
ll n, m, k;
cin >> n >> m >> k;
using mint = modint998244353;
if (m <= k) {
cout << mint(m).pow(2 * n) << endl;
return 0;
}
mint ans = 0;
ans += (m - k) * (mint(k).pow(2 * n) - mint(k - 1).pow(2 * n));
ans += mint(k).pow(2 * n);
cout << ans << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0