結果
問題 | No.1417 100の倍数かつ正整数(2) |
ユーザー | 🍮かんプリン |
提出日時 | 2022-10-30 11:20:57 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 7 ms / 3,000 ms |
コード長 | 10,657 bytes |
コンパイル時間 | 2,091 ms |
コンパイル使用メモリ | 200,268 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-07 04:29:47 |
合計ジャッジ時間 | 3,246 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | AC | 1 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 1 ms
6,944 KB |
testcase_05 | AC | 1 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 1 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 1 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,940 KB |
testcase_14 | AC | 2 ms
6,944 KB |
testcase_15 | AC | 2 ms
6,944 KB |
testcase_16 | AC | 2 ms
6,944 KB |
testcase_17 | AC | 1 ms
6,944 KB |
testcase_18 | AC | 2 ms
6,940 KB |
testcase_19 | AC | 1 ms
6,944 KB |
testcase_20 | AC | 2 ms
6,944 KB |
testcase_21 | AC | 1 ms
6,940 KB |
testcase_22 | AC | 1 ms
6,944 KB |
testcase_23 | AC | 1 ms
6,944 KB |
testcase_24 | AC | 1 ms
6,944 KB |
testcase_25 | AC | 1 ms
6,940 KB |
testcase_26 | AC | 1 ms
6,940 KB |
testcase_27 | AC | 1 ms
6,940 KB |
testcase_28 | AC | 1 ms
6,944 KB |
testcase_29 | AC | 2 ms
6,940 KB |
testcase_30 | AC | 2 ms
6,944 KB |
testcase_31 | AC | 2 ms
6,940 KB |
testcase_32 | AC | 2 ms
6,940 KB |
testcase_33 | AC | 4 ms
6,940 KB |
testcase_34 | AC | 6 ms
6,944 KB |
testcase_35 | AC | 7 ms
6,940 KB |
testcase_36 | AC | 6 ms
6,940 KB |
testcase_37 | AC | 7 ms
6,940 KB |
testcase_38 | AC | 7 ms
6,940 KB |
ソースコード
/** * @FileName a.cpp * @Author kanpurin * @Created 2022.10.30 11:20:45 **/ #include "bits/stdc++.h" using namespace std; typedef long long ll; template< int MOD > struct mint { public: unsigned int x; mint() : x(0) {} mint(long long v) { long long w = (long long)(v % (long long)(MOD)); if (w < 0) w += MOD; x = (unsigned int)(w); } mint(std::string &s) { unsigned int z = 0; for (int i = 0; i < s.size(); i++) { z *= 10; z += s[i] - '0'; z %= MOD; } x = z; } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint& operator+=(const mint &a) { if ((x += a.x) >= MOD) x -= MOD; return *this; } mint& operator-=(const mint &a) { if ((x -= a.x) >= MOD) x += MOD; return *this; } mint& operator*=(const mint &a) { unsigned long long z = x; z *= a.x; x = (unsigned int)(z % MOD); return *this; } mint& operator/=(const mint &a) {return *this = *this * a.inv(); } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs.x == rhs.x; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs.x != rhs.x; } friend std::ostream& operator<<(std::ostream &os, const mint &n) { return os << n.x; } friend std::istream &operator>>(std::istream &is, mint &n) { unsigned int x; is >> x; n = mint(x); return is; } mint inv() const { assert(x); return pow(MOD-2); } mint pow(long long n) const { assert(0 <= n); mint p = *this, r = 1; while (n) { if (n & 1) r *= p; p *= p; n >>= 1; } return r; } mint sqrt() const { if (this->x < 2) return *this; if (this->pow((MOD-1)>>1).x != 1) return mint(0); mint b = 1, one = 1; while (b.pow((MOD-1) >> 1) == 1) b += one; long long m = MOD-1, e = 0; while (m % 2 == 0) m >>= 1, e += 1; mint x = this->pow((m - 1) >> 1); mint y = (*this) * x * x; x *= (*this); mint z = b.pow(m); while (y.x != 1) { int j = 0; mint t = y; while (t != one) j += 1, t *= t; z = z.pow(1LL << (e-j-1)); x *= z; z *= z; y *= z; e = j; } return x; } }; constexpr int MOD = 1e9 + 7; struct Monoid { mint<MOD> val; bool undef = true; Monoid() { *this = zero(); } Monoid(long long val, bool undef = true) : val(val), undef(undef) {} static Monoid zero() { return Monoid(0); } static Monoid e() { return Monoid(1,false); } Monoid& operator+=(const Monoid &a) { if (this->undef) *this = a; else if (!a.undef) this->val += a.val; return *this; } Monoid& operator*=(int c) { return *this; } friend Monoid operator+(const Monoid& a, const Monoid& b) { return Monoid(a) += b; } friend Monoid operator*(const Monoid& a, int c) { return Monoid(a) *= c; } friend std::ostream& operator<<(std::ostream &os, const Monoid &x) { return os << x.val; } }; struct Automaton { vector<vector<int>> delta; vector<bool> is_accept, is_reject; int init; int alphabet_size = 10; int next(int state, int c) const { return delta[state][c]; } bool accept(int state) const { return is_accept[state]; } bool reject(int state) const { return is_reject[state]; } int size() const {return delta.size(); } }; template<class Automaton1, class Automaton2> Automaton IntersectionAutomaton(const Automaton1 &A, const Automaton2 &B) { assert(A.alphabet_size == B.alphabet_size); Automaton M; M.alphabet_size = A.alphabet_size; vector<vector<int>> table(A.size(), vector<int>(B.size(),-1)); vector<int> x = {A.init}, y = {B.init}; table[x[0]][y[0]] = 0; M.init = 0; for (int i = 0; i < x.size(); ++i) { M.delta.push_back(vector<int>(M.alphabet_size, -1)); M.is_accept.push_back(A.accept(x[i]) && B.accept(y[i])); M.is_reject.push_back(A.reject(x[i]) || B.reject(y[i])); for (int c = 0; c < A.alphabet_size; c++) { int u = A.next(x[i],c), v = B.next(y[i],c); if (table[u][v] == -1) { table[u][v] = x.size(); x.push_back(u); y.push_back(v); } M.delta[i][c] = table[u][v]; } } return M; } struct ProdOfDigitsAutomaton : public Automaton { private: long long N; int cnt_2 = 0,cnt_3 = 0,cnt_5 = 0,cnt_7 = 0; inline int _tostate(int i2, int i3, int i5, int i7) { return min(i2,cnt_2)+(min(i3,cnt_3)+(min(i5,cnt_5)+min(i7,cnt_7)*(cnt_5+1))*(cnt_3+1))*(cnt_2+1); } int _nextstate(int i2, int i3, int i5, int i7, int c) { if (c == 0) return _tostate(cnt_2,cnt_3,cnt_5,cnt_7); else if (c == 1) return _tostate(i2,i3,i5,i7); else if (c == 2) return _tostate(i2+1,i3,i5,i7); else if (c == 3) return _tostate(i2,i3+1,i5,i7); else if (c == 4) return _tostate(i2+2,i3,i5,i7); else if (c == 5) return _tostate(i2,i3,i5+1,i7); else if (c == 6) return _tostate(i2+1,i3+1,i5,i7); else if (c == 7) return _tostate(i2,i3,i5,i7+1); else if (c == 8) return _tostate(i2+3,i3,i5,i7); else return _tostate(i2,i3+2,i5,i7); } void set_init() { long long M = N; while(M%2 == 0) M/=2,cnt_2++; while(M%3 == 0) M/=3,cnt_3++; while(M%5 == 0) M/=5,cnt_5++; while(M%7 == 0) M/=7,cnt_7++; assert(M == 1); init = (cnt_2+1)*(cnt_3+1)*(cnt_5+1)*(cnt_7+1); } void set_delta() { int qsize = (cnt_2+1)*(cnt_3+1)*(cnt_5+1)*(cnt_7+1)+1; delta.resize(qsize,vector<int>(alphabet_size)); for (int c = 0; c < alphabet_size; c++) { if (c == 0) delta[init][c] = init; else delta[init][c] = _nextstate(0,0,0,0,c); } for (int i2 = 0; i2 <= cnt_2; i2++) { for (int i3 = 0; i3 <= cnt_3; i3++) { for (int i5 = 0; i5 <= cnt_5; i5++) { for (int i7 = 0; i7 <= cnt_7; i7++) { int state = _tostate(i2,i3,i5,i7); for (int c = 0; c < alphabet_size; c++) { delta[state][c] = _nextstate(i2,i3,i5,i7,c); } } } } } } void set_is_accept() { int qsize = (cnt_2+1)*(cnt_3+1)*(cnt_5+1)*(cnt_7+1)+1; is_accept.resize(qsize); is_accept[_tostate(cnt_2,cnt_3,cnt_5,cnt_7)] = true; } void set_is_reject() { int qsize = (cnt_2+1)*(cnt_3+1)*(cnt_5+1)*(cnt_7+1)+1; is_reject.resize(qsize,false); } public: ProdOfDigitsAutomaton(long long N, int alpha_size = 10) : N(N) { assert(alpha_size == 10); alphabet_size = alpha_size; set_init(); set_delta(); set_is_accept(); set_is_reject(); } }; struct ForbiddenNumberAutomaton : public Automaton { private: void set_init() { init = 0; } void set_delta() { int qsize = 3; delta.resize(qsize,vector<int>(alphabet_size)); for (int state = 0; state < qsize; state++) { for (int c = 0; c < alphabet_size; c++) { if (state == 0) { if (c == 0) delta[state][c] = 0; else if (banflg[c]) delta[state][c] = 2; else delta[state][c] = 1; } else if (state == 1) { if (banflg[c]) delta[state][c] = 2; else delta[state][c] = 1; } else { delta[state][c] = 2; } } } } void set_is_accept() { int qsize = 3; is_accept.resize(qsize); for (int state = 0; state < qsize; state++) { is_accept[state] = state == 1; } } void set_is_reject() { int qsize = 3; is_reject.resize(qsize); for (int state = 0; state < qsize; state++) { is_reject[state] = state == 2; } } public: vector<bool> banflg; ForbiddenNumberAutomaton(vector<bool> banflg, int alpha_size = 10) : banflg(banflg) { assert(banflg.size() == alpha_size); alphabet_size = alpha_size; set_init(); set_delta(); set_is_accept(); set_is_reject(); } }; template<typename Automaton> Monoid digitDP(const string &s, const Automaton &dfa, bool eq = 1) { vector<int> alpha(dfa.alphabet_size); iota(alpha.begin(), alpha.end(), 0); vector<vector<Monoid>> dp(2,vector<Monoid>(dfa.size(),Monoid::zero())); dp[1][dfa.init] = Monoid::e(); for (int i = 0; i < s.size(); i++) { vector<vector<Monoid>> dp2(2,vector<Monoid>(dfa.size(),Monoid::zero())); for (int tight = 0; tight <= 1; tight++) { for (int state = 0; state < dfa.size(); state++) { if (dfa.reject(state) || dp[tight][state].undef) continue; int lim = (tight ? s[i] - '0' : dfa.alphabet_size - 1); for (int c = 0; c <= lim; c++) { int tight_ = tight && c == lim; int state_ = dfa.next(state,c); if (dfa.reject(state_)) continue; dp2[tight_][state_] += dp[tight][state]*c; } } } dp = dp2; } Monoid ans = Monoid::zero(); for (int tight = 0; tight <= eq; tight++) for (int state = 0; state < dfa.size(); state++) if (dfa.accept(state)) ans += dp[tight][state]; return ans; } int main() { string n;cin >> n; auto M1 = ForbiddenNumberAutomaton({1,0,0,0,0,0,0,0,0,0}); auto M2 = ProdOfDigitsAutomaton(100); auto M3 = IntersectionAutomaton(M1,M2); cout << digitDP(n,M3) << endl; return 0; }