結果
問題 | No.2122 黄金比で擬似乱数生成 |
ユーザー | haruki_K |
提出日時 | 2022-11-04 22:54:19 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 68 ms / 2,000 ms |
コード長 | 17,622 bytes |
コンパイル時間 | 2,587 ms |
コンパイル使用メモリ | 218,500 KB |
実行使用メモリ | 8,320 KB |
最終ジャッジ日時 | 2024-07-18 22:12:04 |
合計ジャッジ時間 | 3,938 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 6 ms
8,192 KB |
testcase_01 | AC | 10 ms
8,064 KB |
testcase_02 | AC | 9 ms
8,064 KB |
testcase_03 | AC | 10 ms
8,192 KB |
testcase_04 | AC | 9 ms
8,064 KB |
testcase_05 | AC | 12 ms
8,320 KB |
testcase_06 | AC | 8 ms
8,320 KB |
testcase_07 | AC | 10 ms
8,192 KB |
testcase_08 | AC | 10 ms
8,064 KB |
testcase_09 | AC | 11 ms
8,192 KB |
testcase_10 | AC | 11 ms
8,064 KB |
testcase_11 | AC | 8 ms
8,064 KB |
testcase_12 | AC | 10 ms
8,064 KB |
testcase_13 | AC | 11 ms
8,192 KB |
testcase_14 | AC | 13 ms
8,064 KB |
testcase_15 | AC | 16 ms
8,192 KB |
testcase_16 | AC | 30 ms
8,192 KB |
testcase_17 | AC | 10 ms
8,192 KB |
testcase_18 | AC | 6 ms
8,192 KB |
testcase_19 | AC | 10 ms
8,192 KB |
testcase_20 | AC | 7 ms
8,064 KB |
testcase_21 | AC | 7 ms
8,192 KB |
testcase_22 | AC | 68 ms
8,192 KB |
testcase_23 | AC | 67 ms
8,192 KB |
testcase_24 | AC | 58 ms
8,192 KB |
testcase_25 | AC | 65 ms
8,064 KB |
ソースコード
// >>> TEMPLATES #include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using i32 = int32_t; using i64 = int64_t; using u32 = uint32_t; using u64 = uint64_t; #define int ll using pii = pair<int, int>; #define rep(i, n) if (const int _rep_n = n; true) for (int i = 0; i < _rep_n; i++) #define rep1(i, n) if (const int _rep_n = n; true) for (int i = 1; i <= _rep_n; i++) #define repR(i, n) for (int i = (int)(n)-1; i >= 0; i--) #define rep1R(i, n) for (int i = (int)(n); i >= 1; i--) #define loop(i, a, B) for (int i = a; i B; i++) #define loopR(i, a, B) for (int i = a; i B; i--) #define all(x) begin(x), end(x) #define allR(x) rbegin(x), rend(x) #define pb push_back #define eb emplace_back #define fst first #define snd second template <class Int> auto constexpr inf_ = numeric_limits<Int>::max()/2-1; auto constexpr INF32 = inf_<int32_t>; auto constexpr INF64 = inf_<int64_t>; auto constexpr INF = inf_<int>; #ifdef LOCAL #include "debug.hpp" #define oj_local(x, y) (y) #else #define dump(...) (void)(0) #define debug if (0) #define oj_local(x, y) (x) #endif template <class T, class Comp> struct pque : priority_queue<T, vector<T>, Comp> { vector<T> &data() { return this->c; } void clear() { this->c.clear(); } }; template <class T> using pque_max = pque<T, less<T>>; template <class T> using pque_min = pque<T, greater<T>>; template <class T, class = typename T::iterator, enable_if_t<!is_same<T, string>::value, int> = 0> ostream& operator<<(ostream& os, T const& a) { bool f = true; for (auto const& x : a) os << (f ? "" : " ") << x, f = false; return os; } template <class T, size_t N, enable_if_t<!is_same<T, char>::value, int> = 0> ostream& operator<<(ostream& os, const T (&a)[N]) { bool f = true; for (auto const& x : a) os << (f ? "" : " ") << x, f = false; return os; } template <class T, class = decltype(begin(declval<T&>())), class = typename enable_if<!is_same<T, string>::value>::type> istream& operator>>(istream& is, T &a) { for (auto& x : a) is >> x; return is; } template <class T, class S> ostream& operator<<(ostream& os, pair<T, S> const& p) { return os << p.first << " " << p.second; } template <class T, class S> istream& operator>>(istream& is, pair<T, S>& p) { return is >> p.first >> p.second; } template <class... T> ostream& operator<<(ostream& os, tuple<T...> const& t) { bool f = true; apply([&](auto&&... x) { ((os << (f ? f = false, "" : " ") << x), ...); }, t); return os; } template <class... T> istream& operator>>(istream& is, tuple<T...>& t) { apply([&](auto&&... x) { ((is >> x), ...); }, t); return is; } struct IOSetup { IOSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } iosetup; template <class F> struct FixPoint : private F { constexpr FixPoint(F&& f) : F(forward<F>(f)) {} template <class... T> constexpr auto operator()(T&&... x) const { return F::operator()(*this, forward<T>(x)...); } }; struct MakeFixPoint { template <class F> constexpr auto operator|(F&& f) const { return FixPoint<F>(forward<F>(f)); } }; #define def(name, ...) auto name = MakeFixPoint() | [&](auto &&name, __VA_ARGS__) template <class T, size_t d> struct vec_impl { using type = vector<typename vec_impl<T, d-1>::type>; template <class... U> static type make_v(size_t n, U&&... x) { return type(n, vec_impl<T, d-1>::make_v(forward<U>(x)...)); } }; template <class T> struct vec_impl<T, 0> { using type = T; static type make_v(T const& x = {}) { return x; } }; template <class T, size_t d = 1> using vec = typename vec_impl<T, d>::type; template <class T, size_t d = 1, class... Args> auto make_v(Args&&... args) { return vec_impl<T, d>::make_v(forward<Args>(args)...); } template <class T> void quit(T const& x) { cout << x << '\n'; exit(0); } template <class T, class U> constexpr bool chmin(T& x, U const& y) { if (x > (T)y) { x = (T)y; return true; } return false; } template <class T, class U> constexpr bool chmax(T& x, U const& y) { if (x < (T)y) { x = (T)y; return true; } return false; } template <class It> constexpr auto sumof(It b, It e) { return accumulate(b, e, typename iterator_traits<It>::value_type{}); } template <class T, class = decltype(begin(declval<T&>()))> constexpr auto min(T const& a) { return *min_element(begin(a), end(a)); } template <class T, class = decltype(begin(declval<T&>()))> constexpr auto max(T const& a) { return *max_element(begin(a), end(a)); } template <class T> constexpr T min(set<T> const& st) { assert(st.size()); return *st.begin(); } template <class T> constexpr T max(set<T> const& st) { assert(st.size()); return *prev(st.end()); } template <class T> constexpr T min(multiset<T> const& st) { assert(st.size()); return *st.begin(); } template <class T> constexpr T max(multiset<T> const& st) { assert(st.size()); return *prev(st.end()); } constexpr ll max(signed x, ll y) { return max<ll>(x, y); } constexpr ll max(ll x, signed y) { return max<ll>(x, y); } constexpr ll min(signed x, ll y) { return min<ll>(x, y); } constexpr ll min(ll x, signed y) { return min<ll>(x, y); } template <class T> int sz(T const& x) { return x.size(); } template <class C, class T> int lbd(C const& v, T const& x) { return lower_bound(begin(v), end(v), x)-begin(v); } template <class C, class T> int ubd(C const& v, T const& x) { return upper_bound(begin(v), end(v), x)-begin(v); } constexpr ll mod(ll x, ll m) { assert(m > 0); return (x %= m) < 0 ? x+m : x; } constexpr ll div_floor(ll x, ll y) { assert(y != 0); return x/y - ((x^y) < 0 and x%y); } constexpr ll div_ceil(ll x, ll y) { assert(y != 0); return x/y + ((x^y) > 0 and x%y); } constexpr int dx[] = { 1, 0, -1, 0, 1, -1, -1, 1 }; constexpr int dy[] = { 0, 1, 0, -1, 1, 1, -1, -1 }; auto four_nbd(int n, int m) { static vector<pair<int, int>> v; return [n, m](int i, int j) { const int dx[] = { 1, 0, -1, 0 }, dy[] = { 0, 1, 0, -1 }; v.clear(); rep (dir, 4) { int ni = i+dx[dir], nj = j+dy[dir]; if (0 <= ni and ni < n and 0 <= nj and nj < m) { v.emplace_back(ni, nj); } } return v; }; }; template <class Comp> vector<int> iota(int n, Comp comp) { vector<int> idx(n); iota(begin(idx), end(idx), 0); stable_sort(begin(idx), end(idx), comp); return idx; } constexpr int popcnt(ll x) { return __builtin_popcountll(x); } mt19937_64 seed_{random_device{}()}; template <class Int> Int rand(Int a, Int b) { return uniform_int_distribution<Int>(a, b)(seed_); } i64 irand(i64 a, i64 b) { return rand<i64>(a, b); } // [a, b] u64 urand(u64 a, u64 b) { return rand<u64>(a, b); } // template <class It> void shuffle(It l, It r) { shuffle(l, r, seed_); } template <class V> V &operator--(V &v) { for (auto &x : v) --x; return v; } template <class V> V &operator++(V &v) { for (auto &x : v) ++x; return v; } bool next_product(vector<int> &v, int m) { repR (i, v.size()) if (++v[i] < m) return true; else v[i] = 0; return false; } bool next_product(vector<int> &v, vector<int> const& s) { repR (i, v.size()) if (++v[i] < s[i]) return true; else v[i] = 0; return false; } template <class vec> int sort_unique(vec &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); return v.size(); } template <class It> auto prefix_sum(It l, It r) { vector<typename It::value_type> s = { 0 }; while (l != r) s.emplace_back(s.back() + *l++); return s; } template <class It> auto suffix_sum(It l, It r) { vector<typename It::value_type> s = { 0 }; while (l != r) s.emplace_back(*--r + s.back()); reverse(s.begin(), s.end()); return s; } template <class T> T pop(vector<T> &a) { auto x = a.back(); a.pop_back(); return x; } template <class T> T pop_back(vector<T> &a) { auto x = a.back(); a.pop_back(); return x; } template <class T, class V, class C> T pop(priority_queue<T, V, C> &a) { auto x = a.top(); a.pop(); return x; } template <class T> T pop(queue<T> &a) { auto x = a.front(); a.pop(); return x; } template <class T> T pop_front(deque<T> &a) { auto x = a.front(); a.pop_front(); return x; } template <class T> T pop_back(deque<T> &a) { auto x = a.back(); a.pop_back(); return x; } template <class T> T pop_front(set<T> &a) { auto x = *a.begin(); a.erase(a.begin()); return x; } template <class T> T pop_back(set<T> &a) { auto it = prev(a.end()); auto x = *it; a.erase(it); return x; } template <class T> T pop_front(multiset<T> &a) { auto it = a.begin(); auto x = *it; a.erase(it); return x; } template <class T> T pop_back(multiset<T> &a) { auto it = prev(a.end()); auto x = *it; a.erase(it); return x; } // <<< // >>> matrix template <class T> struct semi_ring_one { template <class S> static decltype(S::one()) helper(signed) { return S::one(); } template <class S> static constexpr S helper(long) { return 1; } static T get() { return helper<T>(0); } }; template <class T, int N, int M> struct MatrixBase { static_assert(N > 0 and M > 0); int n = N, m = M; array<T, N*M> a = {}; MatrixBase() {} MatrixBase(int n, int m) { assert(N == n and M == m); } }; template <class T> struct MatrixBase<T, -1, -1> { int n, m; vector<T> a; MatrixBase() : n(0), m(0) {} MatrixBase(int n, int m) : n(n), m(m), a(n*m) { assert(n > 0 and m > 0); } }; template <class T, int N = -1, int M = -1> struct Matrix : MatrixBase<T, N, M> { using base = MatrixBase<T, N, M>; using base::base, base::n, base::m, base::a; Matrix(initializer_list<initializer_list<T>> init) : base(init.size(), init.begin()->size()) { int i = 0; for (auto const& ls : init) { assert((int)ls.size() == m); for (auto const& x : ls) { a[i++] = x; } } } auto operator[](int i) const { assert(0 <= i); assert(i < n); return a.begin() + i*m; } auto operator[](int i) { assert(0 <= i); assert(i < n); return a.begin() + i*m; } bool operator==(Matrix const& x) const { return n == x.n and m == x.m and a == x.a; } bool operator!=(Matrix const& x) const { return !(*this == x); } Matrix operator+() const { return *this; } Matrix operator+(Matrix const& x) const { return Matrix(*this) += x; } Matrix& operator+=(Matrix const& x) { assert(n == x.n and m == x.m); rep (i, a.size()) a[i] += x.a[i]; return *this; } template <int L> Matrix<T, N, L> operator*(Matrix<T, M, L> const& x) const { assert(m == x.n); Matrix<T, N, L> ret(n, x.m); rep (i, n) rep (j, m) { auto A = ret[i]; auto B = (*this)[i][j]; auto C = x[j]; rep (k, x.m) A[k] += B * C[k]; } return ret; } Matrix& operator*=(Matrix const& x) { auto res = (*this)*x; swap(a, res.a); return *this; } Matrix operator*(T const& c) const { return Matrix(*this) *= c; } Matrix& operator*=(T const& c) { rep (i, a.size()) a[i] *= c; return *this; } friend Matrix operator*(T const& c, Matrix const& x) { Matrix ret = x; rep (i, ret.a.size()) ret.a[i] = c * ret.a[i]; return ret; } static Matrix identity(int n = N) { static_assert(N == M); assert(n >= 0); Matrix ret(n, n); rep (i, n) ret[i][i] = semi_ring_one<T>::get(); return ret; } Matrix pow(ll k) const { assert(n == m); assert(k >= 0); Matrix v = *this, r = identity(n); for ( ; k > 0; k >>= 1, v *= v) if (k & 1) r *= v; return r; } Matrix operator-() const { Matrix x = *this; rep (i, a.size()) a[i] = -a[i]; return x; } Matrix& operator-=(Matrix const& x) { assert(n == x.n and m == x.m); rep (i, a.size()) a[i] -= x.a[i]; return *this; } Matrix operator-(Matrix const& x) const { return Matrix(*this) -= x; } Matrix& operator/=(T const& c) { rep (i, a.size()) a[i] /= c; return *this; } Matrix operator/(T const& c) const { return Matrix(*this) /= c; } friend istream& operator>>(istream& is, Matrix& x) { rep (i, x.n) rep (j, x.m) is >> x[i][j]; return is; } #ifdef LOCAL friend string to_s(Matrix const& x) { string ret; rep (i, x.n) { ret += "\n("; rep (j, x.m) ret += " " + to_s(x[i][j]); ret += " )"; } return ret += "\n"; } #endif }; // <<< // >>> runtime modint template <int id> class runtime_modint { using u32 = uint32_t; using i32 = int32_t; using i64 = int64_t; using M = runtime_modint; u32 x; struct barrett_mul { uint32_t mod; uint64_t inv; barrett_mul() : mod(0), inv(0) { } barrett_mul(uint32_t mod) : mod(mod), inv((uint64_t)(-1) / mod + 1) { } uint32_t operator()(uint32_t a, uint32_t b) const { __uint128_t c = uint64_t(a) * b; uint64_t q = (c * inv) >> 64; uint32_t x = c - q * mod; if (mod <= x) x += mod; return x; } }; inline static barrett_mul mul; public: static void set_mod(u32 new_mod) { mul = barrett_mul(new_mod); } static int mod() { return mul.mod; } runtime_modint(i64 x = 0) : x((assert(mod() > 0), ((x %= (u32)mod()) < 0 ? x+mod() : x))) { } i64 val() const { return x; } constexpr explicit operator i64() const { return x; } bool operator==(M const& r) const { return x == r.x; } bool operator!=(M const& r) const { return x != r.x; } M operator+() const { return *this; } M operator-() const { return M()-*this; } M& operator+=(M const& r) { i64 t = i64(x) + r.x; if (t >= mod()) t -= mod(); x = t; return *this; } M& operator-=(M const& r) { i64 t = i64(x) + mod()-r.x; if (t >= mod()) t -= mod(); x = t; return *this; } M& operator*=(M const& r) { x = mul(x, r.x); return *this; } M& operator/=(M const& r) { return *this *= r.inv(); } M operator+(M r) const { return M(*this) += r; } M operator-(M r) const { return M(*this) -= r; } M operator*(M r) const { return M(*this) *= r; } M operator/(M r) const { return M(*this) /= r; } friend M operator+(i64 x, M y) { return M(x)+y; } friend M operator-(i64 x, M y) { return M(x)-y; } friend M operator*(i64 x, M y) { return M(x)*y; } friend M operator/(i64 x, M y) { return M(x)/y; } M pow(i64 n) const { // 0^0 = 1 if (n < 0) return inv().pow(-n); M v = *this, r = 1; for (; n > 0; n >>= 1, v *= v) if (n&1) r *= v; return r; } M inv() const { uint32_t a = x, b = mod(); int64_t u = 1, v = 0; while (b) { int64_t q = a / b; swap(a -= q * b, b); swap(u -= q * v, v); } assert(a == 1); return u; } static i64 gen() { // assume mod():prime if (mod() == 2) return 1; assert(mod() >= 3); for (int i = 2; i*i <= mod(); i++) assert(mod() % i != 0); vector<int> ps; int n = mod()-1; for (int i = 2; i*i <= n; ++i) { if (n % i) continue; ps.push_back(i); do n /= i; while (n % i == 0); } if (n > 1) ps.push_back(n); n = mod()-1; auto check = [&](M g) { for (int p : ps) if (g.pow(n/p) == 1) return false; return true; }; for (int g = 2; g <= n; ++g) if (check(g)) return g; return -1; } // return minimum k >= (allow_zero ? 0 : 1) s.t. this->pow(k) == y // return -1 if not found int log(M y, bool allow_zero = false) { if (allow_zero and pow(0) == y) return 0; auto x = *this; M z = 1; int k = 0; while ((1u << k) < mod()) { z *= x, k++; if (z == y) return k; } u32 g = gcd(z.x, mod()); if (y.x % g != 0) return -1; auto old_mul = mul; mul = barrett_mul(mod()/g); x.x %= mod(), y.x /= g, z.x /= g; unordered_map<u32, u32> m; int s = 0; M w = 1; for ( ; s*s < mod(); s++) m[(y*w).x] = s, w *= x; while (k < mod()) { z *= w, k += s; if (m.count(z.x)) { swap(mul, old_mul); return k - m[z.x]; } } swap(mul, old_mul); return -1; } #ifdef LOCAL // friend string to_s(M r) { return to_s(r.val(), M::mod()); } friend string to_s(M r) { return to_s(r.val()); } #endif friend ostream& operator<<(ostream& os, M r) { return os << r.val(); } friend istream& operator>>(istream& is, M &r) { i64 x; is >> x; r = x; return is; } }; using mint = runtime_modint<-1>; // <<< int32_t main() { const int N = 10000; mint::set_mod(N); int s, m, L; cin >> s >> m >> L; dump(s); auto f = [&](int n) -> int { if (m == 0) { return 0; } else { Matrix<mint> A = { { n, 1 }, { 1, 0 } }; A = A.pow(m-1); return A[0][0].val() - (m % 2); } }; const int LG = 62; auto to = make_v<int, 2>(LG, N); rep (i, N) to[0][i] = f(i); rep (k, LG-1) rep (i, N) to[k+1][i] = to[k][to[k][i]]; debug { auto to_ = to[0]; to_.resize(10); dump(to_); } rep (k, LG) if (L>>k&1) { s = to[k][s]; } cout << setfill('0') << setw(4) << s << '\n'; }