結果

問題 No.2119 一般化百五減算
ユーザー tokumini_ss
提出日時 2022-11-05 13:30:09
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 70 ms / 2,000 ms
コード長 1,917 bytes
コンパイル時間 1,974 ms
コンパイル使用メモリ 196,532 KB
最終ジャッジ日時 2025-02-08 18:43:42
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 25
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

// 負の数にも対応した mod
// 例えば -17 を 5 で割った余りは本当は 3 (-17 ≡ 3 (mod. 5))
// しかし単に -17 % 5 では -2 になってしまう
inline int64_t mod(int64_t a, int64_t m) { return (a % m + m) % m; }

// 拡張 Euclid の互除法
// ap + bq = gcd(a, b) となる (p, q) を求め、d = gcd(a, b) をリターンします
int64_t extGcd(int64_t a, int64_t b, int64_t& p, int64_t& q) {
    if (b == 0) {
        p = 1;
        q = 0;
        return a;
    }
    int64_t d = extGcd(b, a % b, q, p);
    q -= a / b * p;
    return d;
}

// 中国剰余定理
// リターン値を (r, m) とすると解は x ≡ r (mod. m)
// 解なしの場合は (0, -1) をリターン
pair<int64_t, int64_t> ChineseRem(int64_t b1, int64_t m1, int64_t b2, int64_t m2) {
    int64_t p, q;
    int64_t d = extGcd(m1, m2, p, q); // p is inv of m1/d (mod. m2/d)
    if ((b2 - b1) % d != 0) return make_pair(0, -1);
    int64_t m = m1 * (m2 / d); // lcm of (m1, m2)
    int64_t tmp = (b2 - b1) / d * p % (m2 / d);
    int64_t r = mod(b1 + m1 * tmp, m);
    return make_pair(r, m);
}

int main() {
    int64_t N, M;
    cin >> N >> M;
    vector<int64_t> B(M), C(M);
    for (int64_t i = 0; i < M; i++) {
        cin >> B[i] >> C[i];
        C[i] = mod(C[i], B[i]);
    }

    int64_t r = 0, m = 1;

    for (int64_t i = 0; i < M; i++) {
        const auto [new_r, new_m] = ChineseRem(r, m, C[i], B[i]);
        if ((new_r == 0 && new_m == -1) || new_r > N) {
            cout << "NaN" << endl;
            return 0;
        }
        r = new_r;
        m = new_m;
        if (m > N) {
            break;
        }
    }

    bool ok = true;
    for (int64_t i = 0; i < M; i++) {
        if (mod(r, B[i]) != C[i]) {
            ok = false;
        }
    }

    if (!ok) {
        cout << "NaN" << endl;
        return 0;
    }

    cout << r << endl;
}
0