結果
問題 | No.2086 A+B問題 |
ユーザー | anqooqie |
提出日時 | 2022-11-05 20:21:15 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 56,387 bytes |
コンパイル時間 | 3,491 ms |
コンパイル使用メモリ | 244,064 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-19 12:13:10 |
合計ジャッジ時間 | 4,400 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 1 ms
6,944 KB |
testcase_03 | AC | 1 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,944 KB |
testcase_13 | AC | 2 ms
6,944 KB |
testcase_14 | AC | 2 ms
6,940 KB |
testcase_15 | AC | 2 ms
6,940 KB |
testcase_16 | AC | 2 ms
6,944 KB |
testcase_17 | AC | 2 ms
6,940 KB |
testcase_18 | AC | 1 ms
6,940 KB |
testcase_19 | AC | 2 ms
6,944 KB |
testcase_20 | AC | 2 ms
6,940 KB |
ソースコード
#line 1 "main.cpp" #include <bits/stdc++.h> #line 1 "/home/anqooqie/.proconlib/tools/bigint.hpp" #line 10 "/home/anqooqie/.proconlib/tools/bigint.hpp" #include <type_traits> #line 1 "/home/anqooqie/.proconlib/lib/ac-library/atcoder/modint.hpp" #line 7 "/home/anqooqie/.proconlib/lib/ac-library/atcoder/modint.hpp" #ifdef _MSC_VER #include <intrin.h> #endif #line 1 "/home/anqooqie/.proconlib/lib/ac-library/atcoder/internal_math.hpp" #line 5 "/home/anqooqie/.proconlib/lib/ac-library/atcoder/internal_math.hpp" #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m < 2^31` explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); // @param n `n < 2^32` // @param m `1 <= m < 2^32` // @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64) unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; // y_max < m * (n + 1) // floor(y_max / m) <= n n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal } // namespace atcoder #line 1 "/home/anqooqie/.proconlib/lib/ac-library/atcoder/internal_type_traits.hpp" #line 7 "/home/anqooqie/.proconlib/lib/ac-library/atcoder/internal_type_traits.hpp" namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder #line 14 "/home/anqooqie/.proconlib/lib/ac-library/atcoder/modint.hpp" namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder #line 1 "/home/anqooqie/.proconlib/lib/ac-library/atcoder/convolution.hpp" #line 9 "/home/anqooqie/.proconlib/lib/ac-library/atcoder/convolution.hpp" #line 1 "/home/anqooqie/.proconlib/lib/ac-library/atcoder/internal_bit.hpp" #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal } // namespace atcoder #line 12 "/home/anqooqie/.proconlib/lib/ac-library/atcoder/convolution.hpp" namespace atcoder { namespace internal { template <class mint, int g = internal::primitive_root<mint::mod()>, internal::is_static_modint_t<mint>* = nullptr> struct fft_info { static constexpr int rank2 = bsf_constexpr(mint::mod() - 1); std::array<mint, rank2 + 1> root; // root[i]^(2^i) == 1 std::array<mint, rank2 + 1> iroot; // root[i] * iroot[i] == 1 std::array<mint, std::max(0, rank2 - 2 + 1)> rate2; std::array<mint, std::max(0, rank2 - 2 + 1)> irate2; std::array<mint, std::max(0, rank2 - 3 + 1)> rate3; std::array<mint, std::max(0, rank2 - 3 + 1)> irate3; fft_info() { root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); iroot[rank2] = root[rank2].inv(); for (int i = rank2 - 1; i >= 0; i--) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 2; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } } }; template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly(std::vector<mint>& a) { int n = int(a.size()); int h = internal::ceil_pow2(n); static const fft_info<mint> info; int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len < h) { if (h - len == 1) { int p = 1 << (h - len - 1); mint rot = 1; for (int s = 0; s < (1 << len); s++) { int offset = s << (h - len); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * rot; a[i + offset] = l + r; a[i + offset + p] = l - r; } if (s + 1 != (1 << len)) rot *= info.rate2[bsf(~(unsigned int)(s))]; } len++; } else { // 4-base int p = 1 << (h - len - 2); mint rot = 1, imag = info.root[2]; for (int s = 0; s < (1 << len); s++) { mint rot2 = rot * rot; mint rot3 = rot2 * rot; int offset = s << (h - len); for (int i = 0; i < p; i++) { auto mod2 = 1ULL * mint::mod() * mint::mod(); auto a0 = 1ULL * a[i + offset].val(); auto a1 = 1ULL * a[i + offset + p].val() * rot.val(); auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val(); auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val(); auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val() * imag.val(); auto na2 = mod2 - a2; a[i + offset] = a0 + a2 + a1 + a3; a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i + offset + 2 * p] = a0 + na2 + a1na3imag; a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag); } if (s + 1 != (1 << len)) rot *= info.rate3[bsf(~(unsigned int)(s))]; } len += 2; } } } template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly_inv(std::vector<mint>& a) { int n = int(a.size()); int h = internal::ceil_pow2(n); static const fft_info<mint> info; int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len) { if (len == 1) { int p = 1 << (h - len); mint irot = 1; for (int s = 0; s < (1 << (len - 1)); s++) { int offset = s << (h - len + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * irot.val(); ; } if (s + 1 != (1 << (len - 1))) irot *= info.irate2[bsf(~(unsigned int)(s))]; } len--; } else { // 4-base int p = 1 << (h - len); mint irot = 1, iimag = info.iroot[2]; for (int s = 0; s < (1 << (len - 2)); s++) { mint irot2 = irot * irot; mint irot3 = irot2 * irot; int offset = s << (h - len + 2); for (int i = 0; i < p; i++) { auto a0 = 1ULL * a[i + offset + 0 * p].val(); auto a1 = 1ULL * a[i + offset + 1 * p].val(); auto a2 = 1ULL * a[i + offset + 2 * p].val(); auto a3 = 1ULL * a[i + offset + 3 * p].val(); auto a2na3iimag = 1ULL * mint((mint::mod() + a2 - a3) * iimag.val()).val(); a[i + offset] = a0 + a1 + a2 + a3; a[i + offset + 1 * p] = (a0 + (mint::mod() - a1) + a2na3iimag) * irot.val(); a[i + offset + 2 * p] = (a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) * irot2.val(); a[i + offset + 3 * p] = (a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) * irot3.val(); } if (s + 1 != (1 << (len - 2))) irot *= info.irate3[bsf(~(unsigned int)(s))]; } len -= 2; } } } template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution_naive(const std::vector<mint>& a, const std::vector<mint>& b) { int n = int(a.size()), m = int(b.size()); std::vector<mint> ans(n + m - 1); if (n < m) { for (int j = 0; j < m; j++) { for (int i = 0; i < n; i++) { ans[i + j] += a[i] * b[j]; } } } else { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; } } } return ans; } template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) { int n = int(a.size()), m = int(b.size()); int z = 1 << internal::ceil_pow2(n + m - 1); a.resize(z); internal::butterfly(a); b.resize(z); internal::butterfly(b); for (int i = 0; i < z; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(n + m - 1); mint iz = mint(z).inv(); for (int i = 0; i < n + m - 1; i++) a[i] *= iz; return a; } } // namespace internal template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) return convolution_naive(a, b); return internal::convolution_fft(a, b); } template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution(const std::vector<mint>& a, const std::vector<mint>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) return convolution_naive(a, b); return internal::convolution_fft(a, b); } template <unsigned int mod = 998244353, class T, std::enable_if_t<internal::is_integral<T>::value>* = nullptr> std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; using mint = static_modint<mod>; std::vector<mint> a2(n), b2(m); for (int i = 0; i < n; i++) { a2[i] = mint(a[i]); } for (int i = 0; i < m; i++) { b2[i] = mint(b[i]); } auto c2 = convolution(move(a2), move(b2)); std::vector<T> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { c[i] = c2[i].val(); } return c; } std::vector<long long> convolution_ll(const std::vector<long long>& a, const std::vector<long long>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; static constexpr unsigned long long MOD1 = 754974721; // 2^24 static constexpr unsigned long long MOD2 = 167772161; // 2^25 static constexpr unsigned long long MOD3 = 469762049; // 2^26 static constexpr unsigned long long M2M3 = MOD2 * MOD3; static constexpr unsigned long long M1M3 = MOD1 * MOD3; static constexpr unsigned long long M1M2 = MOD1 * MOD2; static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3; static constexpr unsigned long long i1 = internal::inv_gcd(MOD2 * MOD3, MOD1).second; static constexpr unsigned long long i2 = internal::inv_gcd(MOD1 * MOD3, MOD2).second; static constexpr unsigned long long i3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; auto c1 = convolution<MOD1>(a, b); auto c2 = convolution<MOD2>(a, b); auto c3 = convolution<MOD3>(a, b); std::vector<long long> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { unsigned long long x = 0; x += (c1[i] * i1) % MOD1 * M2M3; x += (c2[i] * i2) % MOD2 * M1M3; x += (c3[i] * i3) % MOD3 * M1M2; // B = 2^63, -B <= x, r(real value) < B // (x, x - M, x - 2M, or x - 3M) = r (mod 2B) // r = c1[i] (mod MOD1) // focus on MOD1 // r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B) // r = x, // x - M' + (0 or 2B), // x - 2M' + (0, 2B or 4B), // x - 3M' + (0, 2B, 4B or 6B) (without mod!) // (r - x) = 0, (0) // - M' + (0 or 2B), (1) // -2M' + (0 or 2B or 4B), (2) // -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1) // we checked that // ((1) mod MOD1) mod 5 = 2 // ((2) mod MOD1) mod 5 = 3 // ((3) mod MOD1) mod 5 = 4 long long diff = c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1)); if (diff < 0) diff += MOD1; static constexpr unsigned long long offset[5] = { 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } } // namespace atcoder #line 1 "/home/anqooqie/.proconlib/tools/quo.hpp" #line 5 "/home/anqooqie/.proconlib/tools/quo.hpp" namespace tools { template <typename M, typename N> constexpr ::std::common_type_t<M, N> quo(const M lhs, const N rhs) { if (lhs >= 0) { return lhs / rhs; } else { if (rhs >= 0) { return -((-lhs - 1 + rhs) / rhs); } else { return (-lhs - 1 + -rhs) / -rhs; } } } } #line 1 "/home/anqooqie/.proconlib/tools/mod.hpp" #line 6 "/home/anqooqie/.proconlib/tools/mod.hpp" namespace tools { template <typename M, typename N> constexpr ::std::common_type_t<M, N> mod(const M lhs, const N rhs) { if constexpr (::std::is_unsigned_v<M> && ::std::is_unsigned_v<N>) { return lhs % rhs; } else { return lhs - ::tools::quo(lhs, rhs) * rhs; } } } #line 1 "/home/anqooqie/.proconlib/tools/floor.hpp" #line 6 "/home/anqooqie/.proconlib/tools/floor.hpp" namespace tools { template <typename M, typename N> constexpr ::std::common_type_t<M, N> floor(const M lhs, const N rhs) { assert(rhs != 0); return lhs / rhs - (((lhs > 0 && rhs < 0) || (lhs < 0 && rhs > 0)) && lhs % rhs); } } #line 1 "/home/anqooqie/.proconlib/tools/ssize.hpp" #line 6 "/home/anqooqie/.proconlib/tools/ssize.hpp" namespace tools { template <typename C> constexpr auto ssize(const C& c) -> ::std::common_type_t<::std::ptrdiff_t, ::std::make_signed_t<decltype(c.size())>> { return c.size(); } } #line 1 "/home/anqooqie/.proconlib/tools/ceil.hpp" #line 6 "/home/anqooqie/.proconlib/tools/ceil.hpp" namespace tools { template <typename M, typename N> constexpr ::std::common_type_t<M, N> ceil(const M lhs, const N rhs) { assert(rhs != 0); return lhs / rhs + (((lhs > 0 && rhs > 0) || (lhs < 0 && rhs < 0)) && lhs % rhs); } } #line 1 "/home/anqooqie/.proconlib/tools/garner2.hpp" #line 1 "/home/anqooqie/.proconlib/tools/is_prime.hpp" #line 1 "/home/anqooqie/.proconlib/tools/prod_mod.hpp" namespace tools { template <typename T1, typename T2, typename T3> constexpr T3 prod_mod(const T1 x, const T2 y, const T3 m) { using u128 = unsigned __int128; u128 prod_mod = u128(x >= 0 ? x : -x) * u128(y >= 0 ? y : -y) % u128(m); if ((x >= 0) ^ (y >= 0)) prod_mod = u128(m) - prod_mod; return prod_mod; } } #line 1 "/home/anqooqie/.proconlib/tools/pow_mod.hpp" #line 6 "/home/anqooqie/.proconlib/tools/pow_mod.hpp" namespace tools { template <typename T1, typename T2, typename T3> constexpr T3 pow_mod(const T1 x, T2 n, const T3 m) { if (m == 1) return 0; T3 r = 1; T3 y = ::tools::mod(x, m); while (n > 0) { if ((n & 1) > 0) { r = ::tools::prod_mod(r, y, m); } y = ::tools::prod_mod(y, y, m); n /= 2; } return r; } } #line 7 "/home/anqooqie/.proconlib/tools/is_prime.hpp" namespace tools { constexpr bool is_prime(const ::std::uint_fast64_t n) { constexpr ::std::array<unsigned long long, 7> bases = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; if (n <= 1) return false; if (n == 2) return true; if (n % 2 == 0) return false; auto d = n - 1; for (; d % 2 == 0; d /= 2); for (const auto a : bases) { if (a % n == 0) return true; auto power = d; auto target = ::tools::pow_mod(a, power, n); bool is_composite = true; if (target == 1) is_composite = false; for (; is_composite && power != n - 1; power *= 2, target = ::tools::prod_mod(target, target, n)) { if (target == n - 1) is_composite = false; } if (is_composite) { return false; } } return true; } } #line 6 "/home/anqooqie/.proconlib/tools/garner2.hpp" namespace tools { template <typename M1, typename M2> long long garner2(const M1& a, const M2& b) { using ull = unsigned long long; static constexpr ull m1_m2 = ull(M1::mod()) * ull(M2::mod()); static const M2 m1_inv_mod_m2 = M2::raw(M1::mod()).inv(); assert(M1::mod() < M2::mod()); assert(::tools::is_prime(M1::mod())); assert(::tools::is_prime(M2::mod())); // t = (b - a) / M1; (mod M2) // return a + t * M1; const M2 t = (b - M2::raw(a.val())) * m1_inv_mod_m2; ull r = t.val(); r *= M1::mod(); r += a.val(); if (r >= m1_m2) r -= m1_m2; return r; } } #line 1 "/home/anqooqie/.proconlib/tools/pow2.hpp" #line 6 "/home/anqooqie/.proconlib/tools/pow2.hpp" namespace tools { template <typename T, typename ::std::enable_if<::std::is_unsigned<T>::value, ::std::nullptr_t>::type = nullptr> constexpr T pow2(const T x) { return static_cast<T>(1) << x; } template <typename T, typename ::std::enable_if<::std::is_signed<T>::value, ::std::nullptr_t>::type = nullptr> constexpr T pow2(const T x) { return static_cast<T>(static_cast<typename ::std::make_unsigned<T>::type>(1) << static_cast<typename ::std::make_unsigned<T>::type>(x)); } } #line 1 "/home/anqooqie/.proconlib/tools/abs.hpp" namespace tools { constexpr float abs(const float x) { return x < 0 ? -x : x; } constexpr double abs(const double x) { return x < 0 ? -x : x; } constexpr long double abs(const long double x) { return x < 0 ? -x : x; } constexpr int abs(const int x) { return x < 0 ? -x : x; } constexpr long abs(const long x) { return x < 0 ? -x : x; } constexpr long long abs(const long long x) { return x < 0 ? -x : x; } } #line 1 "/home/anqooqie/.proconlib/tools/gcd.hpp" #line 6 "/home/anqooqie/.proconlib/tools/gcd.hpp" namespace tools { template <typename M, typename N> constexpr ::std::common_type_t<M, N> gcd(const M m, const N n) { return ::std::gcd(m, n); } } #line 29 "/home/anqooqie/.proconlib/tools/bigint.hpp" namespace tools { class bigint { private: using mint1 = ::atcoder::static_modint<167772161>; using mint2 = ::atcoder::static_modint<469762049>; bool m_positive; ::std::vector<::std::int_fast32_t> m_digits; static constexpr ::std::int_fast32_t BASE = 10000; static constexpr ::std::int_fast32_t LOG10_BASE = 4; static constexpr ::std::array<::std::int_fast32_t, 5> POW10 = {1, 10, 100, 1000, 10000}; static int compare_3way(const ::std::size_t lhs, const ::std::size_t rhs) { if (lhs < rhs) return -1; if (lhs == rhs) return 0; return 1; } static int compare_3way_abs(const ::tools::bigint& lhs, const ::tools::bigint& rhs) { if (const auto comp = ::tools::bigint::compare_3way(lhs.m_digits.size(), rhs.m_digits.size()); comp != 0) { return comp; } for (::std::size_t i = 0; i < lhs.m_digits.size(); ++i) { if (const auto comp = ::tools::bigint::compare_3way(lhs.m_digits[lhs.m_digits.size() - 1 - i], rhs.m_digits[rhs.m_digits.size() - 1 - i]); comp != 0) { return comp; } } return 0; } ::tools::bigint& regularize(const int level) { if (level > 0) { if (level == 2) { for (::std::size_t i = 0; i + 1 < this->m_digits.size(); ++i) { this->m_digits[i + 1] += ::tools::quo(this->m_digits[i], BASE); this->m_digits[i] = ::tools::mod(this->m_digits[i], BASE); } } else { for (::std::size_t i = 0; i + 1 < this->m_digits.size(); ++i) { if (this->m_digits[i] < 0) { this->m_digits[i] += BASE; --this->m_digits[i + 1]; } else if (this->m_digits[i] >= BASE) { this->m_digits[i] -= BASE; ++this->m_digits[i + 1]; } } } if (!this->m_digits.empty() && this->m_digits.back() < 0) { this->m_positive = !this->m_positive; for (::std::size_t i = 0; i < this->m_digits.size(); ++i) { this->m_digits[i] = -this->m_digits[i]; } for (::std::size_t i = 0; i + 1 < this->m_digits.size(); ++i) { if (this->m_digits[i] < 0) { this->m_digits[i] = BASE + this->m_digits[i]; --this->m_digits[i + 1]; } } } if (level == 2) { while (!this->m_digits.empty() && this->m_digits.back() >= BASE) { this->m_digits.push_back(this->m_digits.back() / BASE); this->m_digits[this->m_digits.size() - 2] %= BASE; } } else { if (!this->m_digits.empty() && this->m_digits.back() >= BASE) { this->m_digits.back() -= BASE; this->m_digits.push_back(1); } } } while (!this->m_digits.empty() && this->m_digits.back() == 0) { this->m_digits.pop_back(); } if (this->m_digits.empty() && !this->m_positive) { this->m_positive = true; } return *this; } public: ::tools::bigint& negate() { if (!this->m_digits.empty()) { this->m_positive = !this->m_positive; } return *this; } ::tools::bigint& multiply_by_pow10(const ::std::ptrdiff_t exponent) { if (!this->m_digits.empty()) { const ::std::ptrdiff_t exponent10000 = ::tools::floor(exponent, LOG10_BASE); ::std::int_fast32_t mod = 0; if (exponent10000 > 0) { ::std::vector<::std::int_fast32_t> zero(exponent10000, 0); this->m_digits.insert(this->m_digits.begin(), zero.begin(), zero.end()); } else if (exponent10000 < 0) { if (::tools::ssize(this->m_digits) >= -exponent10000) { mod = this->m_digits[-exponent10000 - 1] / POW10[LOG10_BASE * (exponent10000 + 1) - exponent]; } this->m_digits.erase(this->m_digits.begin(), this->m_digits.begin() + ::std::min<::std::size_t>(-exponent10000, this->m_digits.size())); } if (const ::std::int_fast32_t coefficient = POW10[exponent - LOG10_BASE * exponent10000]; coefficient > POW10[0]) { for (auto& d : this->m_digits) { d *= coefficient; } if (mod > 0 && this->m_digits.empty()) { this->m_digits.push_back(0); } this->m_digits[0] += mod; this->regularize(2); } else { this->regularize(0); } } return *this; } ::tools::bigint& divide_by_pow10(const ::std::ptrdiff_t exponent) { this->multiply_by_pow10(-exponent); return *this; } static int compare_3way(const ::tools::bigint& lhs, const ::tools::bigint& rhs) { if (!lhs.m_positive && rhs.m_positive) return -1; if (lhs.m_positive && !rhs.m_positive) return 1; return ::tools::bigint::compare_3way_abs(lhs, rhs) * (lhs.m_positive ? 1 : -1); } int signum() const { if (!this->m_positive) return -1; if (this->m_digits.empty()) return 0; return 1; } ::std::size_t size() const { if (this->m_digits.empty()) return 0; return LOG10_BASE * (this->m_digits.size() - 1) + ::std::distance(POW10.begin(), ::std::upper_bound(POW10.begin(), POW10.end(), this->m_digits[this->m_digits.size() - 1])); } ::std::int_fast32_t operator[](const ::std::size_t i) const { return i < LOG10_BASE * this->m_digits.size() ? this->m_digits[i / LOG10_BASE] / POW10[i % LOG10_BASE] % 10 : 0; } private: ::tools::bigint& internal_add(const ::tools::bigint& other, const bool plus) { const bool this_positive = this->m_positive; if (!this_positive) { this->negate(); } this->m_digits.resize(::std::max(this->m_digits.size(), other.m_digits.size())); if (this_positive == (other.m_positive == plus)) { for (::std::size_t i = 0; i < other.m_digits.size(); ++i) { this->m_digits[i] += other.m_digits[i]; } } else { for (::std::size_t i = 0; i < other.m_digits.size(); ++i) { this->m_digits[i] -= other.m_digits[i]; } } this->regularize(1); if (!this_positive) { this->negate(); } return *this; } public: bigint() : m_positive(true) { } bigint(const ::tools::bigint&) = default; bigint(::tools::bigint&&) = default; ~bigint() = default; ::tools::bigint& operator=(const ::tools::bigint&) = default; ::tools::bigint& operator=(::tools::bigint&&) = default; template <typename T, typename ::std::enable_if<::std::is_integral_v<T>, ::std::nullptr_t>::type = nullptr> explicit bigint(T n) : m_positive(n >= 0) { while (n != 0) { this->m_digits.push_back(n % BASE); n /= BASE; } if (!this->m_positive) { for (auto& d : this->m_digits) { d = -d; } } } explicit bigint(const ::std::string& s) { assert(!s.empty()); ::std::size_t offset; if (s[0] == '+') { this->m_positive = true; offset = 1; } else if (s[0] == '-') { this->m_positive = false; offset = 1; } else { this->m_positive = true; offset = 0; } this->m_digits.reserve(::tools::ceil<::std::size_t>(s.size() - offset, LOG10_BASE)); for (::std::size_t i = 0; i < s.size() - offset; i += LOG10_BASE) { this->m_digits.push_back(0); for (::std::size_t j = ::std::min(i + LOG10_BASE, s.size() - offset); j --> i;) { assert('0' <= s[s.size() - 1 - j] && s[s.size() - 1 - j] <= '9'); this->m_digits.back() = this->m_digits.back() * 10 + (s[s.size() - 1 - j] - '0'); } } this->regularize(0); } friend bool operator==(const ::tools::bigint& lhs, const ::tools::bigint& rhs) { return lhs.m_positive == rhs.m_positive && lhs.m_digits == rhs.m_digits; } friend bool operator!=(const ::tools::bigint& lhs, const ::tools::bigint& rhs) { return !(lhs == rhs); } friend bool operator<(const ::tools::bigint& lhs, const ::tools::bigint& rhs) { return ::tools::bigint::compare_3way(lhs, rhs) < 0; } friend bool operator>(const ::tools::bigint& lhs, const ::tools::bigint& rhs) { return ::tools::bigint::compare_3way(lhs, rhs) > 0; } friend bool operator<=(const ::tools::bigint& lhs, const ::tools::bigint& rhs) { return ::tools::bigint::compare_3way(lhs, rhs) <= 0; } friend bool operator>=(const ::tools::bigint& lhs, const ::tools::bigint& rhs) { return ::tools::bigint::compare_3way(lhs, rhs) >= 0; } ::tools::bigint operator+() const { return *this; } ::tools::bigint operator-() const { return ::tools::bigint(*this).negate(); } ::tools::bigint& operator+=(const ::tools::bigint& other) { return this->internal_add(other, true); } ::tools::bigint& operator-=(const ::tools::bigint& other) { return this->internal_add(other, false); } ::tools::bigint& operator*=(const ::tools::bigint& other) { // Constraint derived from atcoder::convolution assert(this->m_digits.size() + other.m_digits.size() <= ::tools::pow2(25) + 1); ::std::vector<mint1> a1, b1; ::std::vector<mint2> a2, b2; a1.reserve(this->m_digits.size()); a2.reserve(this->m_digits.size()); b1.reserve(other.m_digits.size()); b2.reserve(other.m_digits.size()); for (const auto a_i : this->m_digits) { a1.push_back(mint1::raw(a_i)); a2.push_back(mint2::raw(a_i)); } for (const auto b_i : other.m_digits) { b1.push_back(mint1::raw(b_i)); b2.push_back(mint2::raw(b_i)); } const auto c1 = ::atcoder::convolution(a1, b1); const auto c2 = ::atcoder::convolution(a2, b2); this->m_digits.clear(); this->m_digits.reserve(c1.size() + 1); long long carry = 0; for (::std::size_t i = 0; i < c1.size(); ++i) { // Since a_i <= 10^4 - 1 and b_i <= 10^4 - 1, c_i <= (10^4 - 1)^2 * min(this->m_digits.size(), other.m_digits.size()) holds. // In addition, since this->m_digits.size() + other.m_digits.size() <= 2^25 + 1, c_i <= (10^4 - 1)^2 * 2^24 = 1677386072457216 holds eventually. // 1677386072457216 < 167772161 * 469762049 = 78812994116517889 holds, so we can reconstruct c_i from mod(c_i, 167772161) and mod(c_i, 469762049) by CRT. long long c_i = ::tools::garner2(c1[i], c2[i]); c_i += carry; carry = c_i / BASE; c_i %= BASE; this->m_digits.push_back(c_i); } if (carry > 0) { this->m_digits.push_back(carry); } this->m_positive = this->m_positive == other.m_positive; this->regularize(0); return *this; } friend ::tools::bigint operator+(const ::tools::bigint& lhs, const ::tools::bigint& rhs) { return ::tools::bigint(lhs) += rhs; } friend ::tools::bigint operator-(const ::tools::bigint& lhs, const ::tools::bigint& rhs) { return ::tools::bigint(lhs) -= rhs; } friend ::tools::bigint operator*(const ::tools::bigint& lhs, const ::tools::bigint& rhs) { return ::tools::bigint(lhs) *= rhs; } ::tools::bigint& operator++() { return *this += ::tools::bigint(1); } ::tools::bigint operator++(int) { ::tools::bigint old(*this); ++(*this); return old; } ::tools::bigint& operator--() { return *this -= ::tools::bigint(1); } ::tools::bigint operator--(int) { ::tools::bigint old(*this); --(*this); return old; } ::tools::bigint& operator/=(const ::tools::bigint& other) { assert(other.signum() != 0); if (::tools::bigint::compare_3way_abs(*this, other) < 0) { this->m_digits.clear(); this->m_positive = true; return *this; } if (other.m_digits.size() == 1 && other.m_digits[0] == 1) { this->m_positive = (this->m_positive == other.m_positive); return *this; } using u64 = ::std::uint_fast64_t; static const ::tools::bigint u64_threshold((::std::numeric_limits<u64>::max() - (BASE - 1)) / BASE); using u128 = unsigned __int128; static const ::tools::bigint u128_threshold("34028236692093846346337460743176820"); #define TOOLS_BIGINT_NAIVE(type) do {\ if (::tools::bigint::compare_3way_abs(other, type ## _threshold) <= 0) { \ type mod = 0;\ for (::std::size_t i = other.m_digits.size(); i --> 0;) {\ mod *= BASE;\ mod += other.m_digits[i];\ }\ \ type carry = 0;\ for (::std::size_t i = this->m_digits.size(); i--> 0;) {\ carry *= BASE;\ carry += this->m_digits[i];\ this->m_digits[i] = carry / mod;\ carry %= mod;\ }\ \ this->m_positive = (this->m_positive == other.m_positive);\ return this->regularize(0);\ }\ } while (false) TOOLS_BIGINT_NAIVE(u64); TOOLS_BIGINT_NAIVE(u128); #undef TOOLS_BIGINT_NAIVE using bigdecimal = ::std::pair<::tools::bigint, ::std::ptrdiff_t>; static const auto precision = [](const bigdecimal& x) { return x.first.m_digits.size(); }; static const auto regularize = [](bigdecimal& x) -> bigdecimal& { if (x.first.m_digits.empty()) { x.second = 0; } return x; }; static const auto negate = [](bigdecimal& x) -> bigdecimal& { x.first.negate(); return x; }; static const auto make_abs = [](bigdecimal& x) -> bigdecimal& { if (!x.first.m_positive) { negate(x); } return x; }; static const auto set_precision = [](bigdecimal& x, const ::std::size_t p) -> bigdecimal& { const ::std::ptrdiff_t diff = ::std::ptrdiff_t(p) - ::std::ptrdiff_t(precision(x)); x.first.multiply_by_pow10(diff * LOG10_BASE); x.second -= diff; regularize(x); return x; }; static const auto plus = [](bigdecimal& x, bigdecimal& y) -> bigdecimal& { if (x.second < y.second) { set_precision(y, precision(y) + (y.second - x.second)); } else if (x.second > y.second) { set_precision(x, precision(x) + (x.second - y.second)); } x.first += y.first; regularize(x); return x; }; static const auto multiplies = [](bigdecimal& x, const bigdecimal& y) -> bigdecimal& { x.first *= y.first; x.second += y.second; regularize(x); return x; }; static const auto compare_3way = [](const bigdecimal& x, const bigdecimal& y) { if (!x.first.m_positive && y.first.m_positive) return -1; if (x.first.m_positive && !y.first.m_positive) return 1; return [&]() { if (x.second <= y.second) { if (const auto comp = ::tools::bigint::compare_3way(precision(x), precision(y) + (y.second - x.second)); comp != 0) { return comp; } for (::std::size_t i = 0; i < precision(x); ++i) { if (const auto comp = ::tools::bigint::compare_3way(x.first.m_digits[precision(x) - 1 - i], precision(y) >= i + 1 ? y.first.m_digits[precision(y) - 1 - i] : 0); comp != 0) { return comp; } } } else { if (const auto comp = ::tools::bigint::compare_3way(precision(x) + (x.second - y.second), precision(y)); comp != 0) { return comp; } for (::std::size_t i = 0; i < precision(y); ++i) { if (const auto comp = ::tools::bigint::compare_3way(precision(x) >= i + 1 ? x.first.m_digits[precision(x) - 1 - i] : 0, y.first.m_digits[precision(y) - 1 - i]); comp != 0) { return comp; } } } return 0; }() * (x.first.m_positive ? 1 : -1); }; const bool r_positive = this->m_positive == other.m_positive; if (!this->m_positive) { this->negate(); } const ::std::size_t inv_final_goal_precision = this->m_digits.size() - other.m_digits.size() + 2; const ::std::size_t inv_first_goal_precision = ::std::min<::std::size_t>(inv_final_goal_precision, 3); bigdecimal o(other, 0); make_abs(o); set_precision(o, ::std::min<::std::size_t>(other.m_digits.size(), 6)); bigdecimal prev_inv(::tools::bigint(0), 0); bigdecimal inv(::tools::bigint(1), -::tools::ssize(other.m_digits)); while (compare_3way(prev_inv, inv) != 0) { prev_inv = inv; negate(inv); multiplies(inv, o); bigdecimal two(::tools::bigint(2), 0); plus(inv, two); multiplies(inv, prev_inv); set_precision(inv, ::std::min(precision(inv), inv_first_goal_precision)); } if (inv_first_goal_precision < inv_final_goal_precision) { prev_inv = bigdecimal(::tools::bigint(0), 0); while (compare_3way(prev_inv, inv) != 0) { prev_inv = inv; negate(inv); multiplies(inv, o); bigdecimal two(::tools::bigint(2), 0); plus(inv, two); multiplies(inv, prev_inv); set_precision(inv, ::std::min(precision(prev_inv) * 2, inv_final_goal_precision)); const ::std::size_t o_precision = precision(o); o = bigdecimal(other, 0); make_abs(o); set_precision(o, ::std::min(o_precision * 2, other.m_digits.size())); } } set_precision(inv, inv_final_goal_precision); o = bigdecimal(other, 0); make_abs(o); bigdecimal r(*this, 0); multiplies(r, inv); set_precision(r, precision(r) + r.second); ::tools::bigint r_plus_1 = r.first + ::tools::bigint(1); if (*this >= r_plus_1 * o.first) { *this = ::std::move(r_plus_1); } else { *this = ::std::move(r.first); } this->m_positive = r_positive; return *this; } friend ::tools::bigint operator/(const ::tools::bigint& lhs, const ::tools::bigint& rhs) { return ::tools::bigint(lhs) /= rhs; } ::tools::bigint& operator%=(const ::tools::bigint& other) { using u64 = ::std::uint_fast64_t; static const ::tools::bigint u64_threshold((::std::numeric_limits<u64>::max() - (BASE - 1)) / BASE); using u128 = unsigned __int128; static const ::tools::bigint u128_threshold("34028236692093846346337460743176820"); #define TOOLS_BIGINT_NAIVE(type) do {\ if (::tools::bigint::compare_3way_abs(other, type ## _threshold) <= 0) { \ type mod = 0;\ for (::std::size_t i = other.m_digits.size(); i --> 0;) {\ mod *= BASE;\ mod += other.m_digits[i];\ }\ \ type result = 0;\ for (::std::size_t i = this->m_digits.size(); i --> 0;) {\ result *= BASE;\ result += this->m_digits[i];\ result %= mod;\ }\ \ this->m_digits.clear();\ while (result > 0) {\ this->m_digits.push_back(result % BASE);\ result /= BASE;\ }\ \ return this->regularize(0);\ }\ } while (false) TOOLS_BIGINT_NAIVE(u64); TOOLS_BIGINT_NAIVE(u128); #undef TOOLS_BIGINT_NAIVE const ::tools::bigint self = *this; *this /= other; this->negate(); *this *= other; *this += self; return *this; } friend ::tools::bigint operator%(const ::tools::bigint& lhs, const ::tools::bigint& rhs) { return ::tools::bigint(lhs) %= rhs; } template <typename T, ::std::enable_if_t<::std::is_integral_v<T>, ::std::nullptr_t> = nullptr> explicit operator T() const { assert(::tools::bigint(::std::numeric_limits<T>::min()) <= *this && *this <= ::tools::bigint(::std::numeric_limits<T>::max())); T result = 0; for (::std::size_t i = this->m_digits.size(); i --> 0;) { result = result * BASE + this->m_digits[i] * (this->m_positive ? 1 : -1); } return result; } explicit operator double() const { long double result = 0.0; const ::std::size_t precision = this->size(); for (::std::size_t i = 0; i < ::std::numeric_limits<long double>::digits10; ++i) { result = result * 10.0L + (precision >= i + 1 ? (*this)[precision - 1 - i] : 0) * this->signum(); } result *= ::std::pow(10.0L, static_cast<long double>(precision) - static_cast<long double>(::std::numeric_limits<long double>::digits10)); return static_cast<double>(result); } friend ::std::istream& operator>>(::std::istream& is, ::tools::bigint& self) { ::std::string s; is >> s; self = ::tools::bigint(s); return is; } friend ::std::ostream& operator<<(::std::ostream& os, const ::tools::bigint& self) { if (!self.m_positive) { os << '-'; } if (self.m_digits.empty()) { return os << '0'; } os << self.m_digits.back(); for (::std::size_t i = 1; i < self.m_digits.size(); ++i) { os << ::std::setw(LOG10_BASE) << ::std::setfill('0') << self.m_digits[self.m_digits.size() - 1 - i]; } return os; } friend ::tools::bigint abs(::tools::bigint x); }; inline ::tools::bigint abs(::tools::bigint x) { if (!x.m_positive) x.negate(); return x; } inline ::tools::bigint gcd(::tools::bigint x, ::tools::bigint y) { if (x.signum() < 0) x.negate(); if (y.signum() < 0) y.negate(); while (y.signum() != 0) { x %= y; ::std::swap(x, y); } return x; } } #line 3 "main.cpp" int main() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); tools::bigint A, B; std::cin >> A >> B; std::cout << A + B << '\n'; return 0; }