結果

問題 No.235 めぐるはめぐる (5)
ユーザー outlineoutline
提出日時 2022-11-08 12:18:29
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,188 ms / 10,000 ms
コード長 9,350 bytes
コンパイル時間 2,342 ms
コンパイル使用メモリ 166,392 KB
実行使用メモリ 27,364 KB
最終ジャッジ日時 2024-07-21 21:03:18
合計ジャッジ時間 7,387 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1,188 ms
26,844 KB
testcase_01 AC 729 ms
27,364 KB
testcase_02 AC 1,055 ms
26,644 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
#include <queue>
#include <string>
#include <map>
#include <set>
#include <stack>
#include <tuple>
#include <deque>
#include <array>
#include <numeric>
#include <bitset>
#include <iomanip>
#include <cassert>
#include <chrono>
#include <random>
#include <limits>
#include <iterator>
#include <functional>
#include <sstream>
#include <fstream>
#include <complex>
#include <cstring>
#include <unordered_map>
#include <unordered_set>
#include <memory>
using namespace std;

// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,tune=native")
// #pragma GCC target("avx512f,avx512dq,avx512cd,avx512bw,avx512vl")

using ll = long long;
constexpr int INF = 1001001001;
constexpr int mod = 1000000007;
// constexpr int mod = 998244353;

template<class T>
inline bool chmax(T& x, T y){
    if(x < y){
        x = y;
        return true;
    }
    return false;
}
template<class T>
inline bool chmin(T& x, T y){
    if(x > y){
        x = y;
        return true;
    }
    return false;
}

constexpr int dx[] = {1, 0, -1, 0, 1, 1, -1, -1};
constexpr int dy[] = {0, 1, 0, -1, 1, -1, 1, -1};

struct mint {
    int x;
    mint() : x(0) {}
    mint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
    mint& operator+=(const mint& p){
        if((x += p.x) >= mod)   x -= mod;
        return *this;
    }
    mint& operator-=(const mint& p){
        if((x -= p.x) < 0)  x += mod;
        return *this;
    }
    mint& operator*=(const mint& p){
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }
    mint& operator/=(const mint& p){
        *this *= p.inverse();
        return *this;
    }
    mint operator-() const { return mint(-x); }
    mint operator+(const mint& p) const { return mint(*this) += p; }
    mint operator-(const mint& p) const { return mint(*this) -= p; }
    mint operator*(const mint& p) const { return mint(*this) *= p; }
    mint operator/(const mint& p) const { return mint(*this) /= p; }
    bool operator==(const mint& p) const { return x == p.x; }
    bool operator!=(const mint& p) const { return x != p.x; }
    mint pow(int64_t n) const {
        mint res = 1, mul = x;
        while(n > 0){
            if(n & 1)   res *= mul;
            mul *= mul;
            n >>= 1;
        }
        return res;
    }
    // x^(a^b)
    // warning : x と mod は互いに素
    // x != 0 かつ x % mod == 0 かつ a > 0 はこれを呼び出さずに 0 を返すように処理
    mint pow2(int64_t a, int64_t b) const {
        if(b == 0)  return *this;
        if((a %= mod - 1) == 0) return mint(1);
        int64_t n = 1;
        while(b > 0){
            if(b & 1)   (n *= a) %= mod - 1;
            (a *= a) %= mod - 1;
            b >>= 1;
        }
        return pow(n);
    }
    mint inverse() const { return pow(mod - 2); }
    friend ostream& operator<<(ostream& os, const mint& p){
        return os << p.x;
    }
    friend istream& operator>>(istream& is, mint& p){
        int64_t val;
        is >> val;
        p = mint(val);
        return is;
    }
};

struct HeavyLightDecomposition {
    using Graph = vector<vector<int>>;

    int V;
    Graph& g;
    vector<int> subtree_size, head, in, out, par, inverse;

    HeavyLightDecomposition(Graph& g_) :
        V(g_.size()), g(g_), subtree_size(V), head(V), in(V), out(V), par(V), inverse(V) {}

    void calc_subtree_size(int cur, int p){
        if(g[cur].size() && g[cur][0] == p){
            swap(g[cur][0], g[cur].back());
        }
        subtree_size[cur] = 1;
        par[cur] = p;
        for(auto& child : g[cur]){
            if(child == p)  continue;
            calc_subtree_size(child, cur);
            subtree_size[cur] += subtree_size[child];
            if(subtree_size[g[cur][0]] < subtree_size[child]){
                swap(g[cur][0], child);
            }
        }
    }

    void dfs(int cur, int p, int& times){
        in[cur] = times++;
        inverse[in[cur]] = cur;
        for(auto& child : g[cur]){
            if(child == p)  continue;
            head[child] = (g[cur][0] == child ? head[cur] : child);
            dfs(child, cur, times);
        }
        out[cur] = times;
    }

    void build(int root = 0){
        calc_subtree_size(root, -1);
        int t = 0;
        dfs(root, -1, t);
    }

    int get(int v, int k){
        for(;;){
            int u = head[v];
            if(in[v] - k >= in[u]){ // u, v in same group
                return inverse[in[v] - k];
            }
            k -= in[v] - in[u] + 1;
            v = par[u];
        }
    }

    int lca(int u, int v){
        for(;; v = par[head[v]]){
            if(in[u] > in[v])   swap(u, v);
            if(head[u] == head[v])  return u;
        }
    }

    vector<pair<int, int>> get_sections(int u, int v, bool is_edge = false){
        vector<pair<int, int>> res;
        for(;; v = par[head[v]]){
            if(in[u] > in[v])   swap(u, v);
            if(head[u] == head[v])  break;
            res.emplace_back(in[head[v]], in[v] + 1);
        }
        res.emplace_back(in[u] + is_edge, in[v] + 1);
        return res;
    }

    int operator[](const int& v) const {
        return in[v];
    }

    int edge(int u, int v){
        return in[in[u] > in[v] ? u : v];
    }
};

template<typename Monoid, typename OperatorMonoid = Monoid>
struct LazySegmentTree{
    using F = function<Monoid(Monoid, Monoid)>;
    using G = function<Monoid(Monoid, OperatorMonoid)>;
    using H = function<OperatorMonoid(OperatorMonoid, OperatorMonoid)>;

    int sz;
    vector<Monoid> data;
    vector<OperatorMonoid> lazy;
    const F f;
    const G g;
    const H h;
    const Monoid M1;            // モノイドの単位元
    const OperatorMonoid OM0;   // 作用素モノイドの単位元

    LazySegmentTree(int n, const F f, const G g, const H h, const Monoid &M1, const OperatorMonoid OM0)
        : f(f), g(g), h(h), M1(M1), OM0(OM0)
    {
        sz = 1;
        while(sz < n)   sz <<= 1;
        data.assign(sz << 1, M1);
        lazy.assign(sz << 1, OM0);
    }

    void set(int k, const Monoid &x){
        data[k + sz] = x;
    }

    void build(){
        for(int k = sz - 1; k > 0; --k){
            data[k] = f(data[k << 1], data[k << 1 | 1]);
        }
    }

    void propagate(int k){
        if(lazy[k] != OM0){
            if(k < sz){
                lazy[k << 1] = h(lazy[k << 1], lazy[k]);
                lazy[k << 1 | 1] = h(lazy[k << 1 | 1], lazy[k]);
            }
            data[k] = g(data[k], lazy[k]);
            lazy[k] = OM0;
        }
    }

    Monoid update(int a, int b, const OperatorMonoid &x, int k = 1, int l = 0, int r = -1){
        if(r == -1)     r = sz;
        propagate(k);
        if(r <= a || b <= l)    return data[k];
        else if(a <= l && r <= b){
            lazy[k] = h(lazy[k], x);
            propagate(k);
            return data[k];
        }
        else{
            return data[k] = f(update(a, b, x, k << 1, l, (l + r) >> 1),
                                update(a, b, x, k << 1 | 1, (l + r) >> 1, r));
        }
    }

    Monoid query(int a, int b, int k = 1, int l = 0, int r = -1){
        if(r == -1)     r = sz;
        propagate(k);
        if(r <= a || b <= l)    return M1;
        else if(a <= l && r <= b)   return data[k];
        else{
            return f(query(a, b, k << 1, l, (l + r) >> 1),
                        query(a, b, k << 1 | 1, (l + r) >> 1, r));
        }
    }

    Monoid operator[](const int &i){
        int k = 1, l = 0, r = sz, m;
        while(k < sz){
            propagate(k);
            k <<= 1;
            m = (l + r) >> 1;
            if(i + 1 <= m)  r = m;
            else { l = m; ++k; }
        }
        propagate(k);
        return data[k];
    }
};

int main(){
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    int N, Q;
    cin >> N;
    vector<mint> S(N), C(N);
    for(int i = 0; i < N; ++i)  cin >> S[i];
    for(int i = 0; i < N; ++i)  cin >> C[i];
    vector<vector<int>> g(N);
    for(int i = 1; i < N; ++i){
        int u, v;
        cin >> u >> v;
        --u, --v;
        g[u].emplace_back(v);
        g[v].emplace_back(u);
    }

    HeavyLightDecomposition hld(g);
    hld.build();

    using Node = pair<mint, mint>;
    auto op = [&](Node l, Node r) -> Node {
        return {l.first + r.first, l.second + r.second};
    };
    auto mapping = [&](Node x, mint f) -> Node {
        return {x.first + x.second * f, x.second};
    };
    auto composition = [&](mint x, mint y) -> mint {
        return x + y;
    };
    LazySegmentTree<Node, mint> seg(N, op, mapping, composition, {0, 0}, 0);
    
    for(int i = 0; i < N; ++i){
        seg.set(hld[i], {S[i], C[i]});
    }
    seg.build();

    cin >> Q;
    for(int q = 0; q < Q; ++q){
        int t, x, y;
        cin >> t >> x >> y;
        --x, --y;
        auto sections = hld.get_sections(x, y);
        if(t == 0){
            mint z; cin >> z;
            for(auto& [l, r] : sections){
                seg.update(l, r, z);
            }
        }
        else{
            mint ans = 0;
            for(auto& [l, r] : sections){
                ans += seg.query(l, r).first;
            }
            cout << ans << '\n';
        }
    }

    return 0;
}
0