結果

問題 No.650 行列木クエリ
ユーザー outlineoutline
提出日時 2022-11-08 14:45:36
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 77 ms / 2,000 ms
コード長 9,760 bytes
コンパイル時間 2,131 ms
コンパイル使用メモリ 161,904 KB
実行使用メモリ 21,132 KB
最終ジャッジ日時 2024-07-21 23:09:22
合計ジャッジ時間 2,984 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 31 ms
6,940 KB
testcase_02 AC 75 ms
16,068 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 33 ms
6,940 KB
testcase_05 AC 77 ms
16,104 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 32 ms
7,040 KB
testcase_09 AC 67 ms
21,132 KB
testcase_10 AC 2 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
#include <queue>
#include <string>
#include <map>
#include <set>
#include <stack>
#include <tuple>
#include <deque>
#include <array>
#include <numeric>
#include <bitset>
#include <iomanip>
#include <cassert>
#include <chrono>
#include <random>
#include <limits>
#include <iterator>
#include <functional>
#include <sstream>
#include <fstream>
#include <complex>
#include <cstring>
#include <unordered_map>
#include <unordered_set>
#include <memory>
using namespace std;

// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,tune=native")
// #pragma GCC target("avx512f,avx512dq,avx512cd,avx512bw,avx512vl")

using ll = long long;
constexpr int INF = 1001001001;
constexpr int mod = 1000000007;
// constexpr int mod = 998244353;

template<class T>
inline bool chmax(T& x, T y){
    if(x < y){
        x = y;
        return true;
    }
    return false;
}
template<class T>
inline bool chmin(T& x, T y){
    if(x > y){
        x = y;
        return true;
    }
    return false;
}

constexpr int dx[] = {1, 0, -1, 0, 1, 1, -1, -1};
constexpr int dy[] = {0, 1, 0, -1, 1, -1, 1, -1};

struct mint {
    int x;
    mint() : x(0) {}
    mint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
    mint& operator+=(const mint& p){
        if((x += p.x) >= mod)   x -= mod;
        return *this;
    }
    mint& operator-=(const mint& p){
        if((x -= p.x) < 0)  x += mod;
        return *this;
    }
    mint& operator*=(const mint& p){
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }
    mint& operator/=(const mint& p){
        *this *= p.inverse();
        return *this;
    }
    mint operator-() const { return mint(-x); }
    mint operator+(const mint& p) const { return mint(*this) += p; }
    mint operator-(const mint& p) const { return mint(*this) -= p; }
    mint operator*(const mint& p) const { return mint(*this) *= p; }
    mint operator/(const mint& p) const { return mint(*this) /= p; }
    bool operator==(const mint& p) const { return x == p.x; }
    bool operator!=(const mint& p) const { return x != p.x; }
    mint pow(int64_t n) const {
        mint res = 1, mul = x;
        while(n > 0){
            if(n & 1)   res *= mul;
            mul *= mul;
            n >>= 1;
        }
        return res;
    }
    // x^(a^b)
    // warning : x と mod は互いに素
    // x != 0 かつ x % mod == 0 かつ a > 0 はこれを呼び出さずに 0 を返すように処理
    mint pow2(int64_t a, int64_t b) const {
        if(b == 0)  return *this;
        if((a %= mod - 1) == 0) return mint(1);
        int64_t n = 1;
        while(b > 0){
            if(b & 1)   (n *= a) %= mod - 1;
            (a *= a) %= mod - 1;
            b >>= 1;
        }
        return pow(n);
    }
    mint inverse() const { return pow(mod - 2); }
    friend ostream& operator<<(ostream& os, const mint& p){
        return os << p.x;
    }
    friend istream& operator>>(istream& is, mint& p){
        int64_t val;
        is >> val;
        p = mint(val);
        return is;
    }
};

struct HeavyLightDecomposition {
    using Graph = vector<vector<int>>;

    int V;
    Graph& g;
    vector<int> subtree_size, head, in, out, par, inverse;

    HeavyLightDecomposition(Graph& g_) :
        V(g_.size()), g(g_), subtree_size(V), head(V), in(V), out(V), par(V), inverse(V) {}

    void calc_subtree_size(int cur, int p){
        if(g[cur].size() && g[cur][0] == p){
            swap(g[cur][0], g[cur].back());
        }
        subtree_size[cur] = 1;
        par[cur] = p;
        for(auto& child : g[cur]){
            if(child == p)  continue;
            calc_subtree_size(child, cur);
            subtree_size[cur] += subtree_size[child];
            if(subtree_size[g[cur][0]] < subtree_size[child]){
                swap(g[cur][0], child);
            }
        }
    }

    void dfs(int cur, int p, int& times){
        in[cur] = times++;
        inverse[in[cur]] = cur;
        for(auto& child : g[cur]){
            if(child == p)  continue;
            head[child] = (g[cur][0] == child ? head[cur] : child);
            dfs(child, cur, times);
        }
        out[cur] = times;
    }

    void build(int root = 0){
        calc_subtree_size(root, -1);
        int t = 0;
        dfs(root, -1, t);
    }

    int get(int v, int k){
        for(;;){
            int u = head[v];
            if(in[v] - k >= in[u]){ // u, v in same group
                return inverse[in[v] - k];
            }
            k -= in[v] - in[u] + 1;
            v = par[u];
        }
    }

    int lca(int u, int v){
        for(;; v = par[head[v]]){
            if(in[u] > in[v])   swap(u, v);
            if(head[u] == head[v])  return u;
        }
    }

    // path
    vector<pair<int, int>> get_sections(int u, int v, bool is_edge = false){
        vector<pair<int, int>> res;
        for(;; v = par[head[v]]){
            if(in[u] > in[v])   swap(u, v);
            if(head[u] == head[v])  break;
            res.emplace_back(in[head[v]], in[v] + 1);
        }
        res.emplace_back(in[u] + is_edge, in[v] + 1);
        return res;
    }

    // subtree
    pair<int, int> get_section(int v, bool is_edge = false){
        return {in[v] + is_edge, out[v]};
    }

    int operator[](const int& v) const {
        return in[v];
    }

    int edge(int u, int v){
        return in[in[u] > in[v] ? u : v];
    }
};

template<typename Monoid>
struct SegmentTree{
    using F = function<Monoid(Monoid, Monoid)>;

    int sz;
    vector<Monoid> seg;

    const F f;
    const Monoid M1;

    SegmentTree(const F f, const Monoid& M1) : f(f), M1(M1) {}

    SegmentTree(int n, const F f, const Monoid &M1) : f(f), M1(M1) {
        sz = 1;
        while(sz < n)   sz <<= 1;
        seg.assign(2 * sz, M1);
    }

    void resize(int n){
        sz = 1;
        while(sz < n)   sz <<= 1;
        seg.assign(2 * sz, M1);
    }

    void set(int k, const Monoid &x){
        seg[k + sz] = x;
    }

    void build(){
        for(int k = sz - 1; k > 0; --k){
            seg[k] = f(seg[k << 1], seg[k << 1 | 1]);
        }
    }

    void update(int k, const Monoid &x){
        k += sz;
        seg[k] = x;
        while(k >>= 1){
            seg[k] = f(seg[k << 1], seg[k << 1 | 1]);
        }
    }

    Monoid query(int a, int b){
        Monoid L = M1, R = M1;
        for(a += sz, b += sz; a < b; a >>= 1, b >>= 1){
            if(a & 1)   L = f(L, seg[a++]);
            if(b & 1)   R = f(seg[--b], R);
        }
        return f(L, R);
    }

    Monoid operator[](const int &k) const{
        return seg[k + sz];
    }

    // (type = true) : find_last
    // (type = false) : find_first
    template<typename C>
    int find_subtree(int a, const C &check, Monoid &M, bool type){
        while(a < sz){
            Monoid nxt = type ? f(seg[a << 1 | type], M) : f(M, seg[a << 1 | type]);
            if(check(nxt))  a = a << 1 | type;
            else M = nxt, a = 2 * a + 1 - type;
        }
        return a - sz;
    }

    template<typename C>
    int find_first(int a, const C &check){
        Monoid L = M1;
        if(a <= 0){
            if(check(f(L, seg[1]))) return find_subtree(1, check, L, false);
            return -1;
        }
        int b = sz;
        for(a += sz, b += sz; a < b; a >>= 1, b >>= 1){
            if(a & 1){
                Monoid nxt = f(L, seg[a]);
                if(check(nxt))  return find_subtree(a, check, L, false);
                L = nxt;
                ++a;
            }
        }
        return -1;
    }

    template<typename C>
    int find_last(int b, const C &check){
        Monoid R = M1;
        if(b >= sz){
            if(check(f(seg[1], R))) return find_subtree(1, check, R, true);
            return -1;
        }
        int a = sz;
        for(b += sz; a < b; a >>= 1, b >>= 1){
            if(b & 1){
                Monoid nxt = f(seg[--b], R);
                if(check(nxt))  return find_subtree(b, check, R, true);
                R = nxt;
            }
        }
        return -1;
    }
};

int main(){
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    int N;
    cin >> N;
    vector<int> a(N), b(N);
    vector<vector<int>> g(N);
    for(int i = 0; i < N - 1; ++i){
        cin >> a[i] >> b[i];
        g[a[i]].emplace_back(b[i]);
        g[b[i]].emplace_back(a[i]);
    }

    HeavyLightDecomposition hld(g);
    hld.build();

    using S = array<array<mint, 2>, 2>;
    auto op = [&](S l, S r) -> S {
        S res = {0, 0,
                 0, 0};
        for(int k = 0; k < 2; ++k){
            for(int i = 0; i < 2; ++i){
                for(int j = 0; j < 2; ++j){
                    res[i][j] += l[i][k] * r[k][j];
                }
            }
        }
        return res;
    };
    S E = {1, 0,
           0, 1};
    SegmentTree<S> seg(N, op, E);

    int Q;
    cin >> Q;
    for(int q = 0; q < Q; ++q){
        char c; cin >> c;
        if(c == 'x'){
            int i;
            cin >> i;
            S x;
            for(int i = 0; i < 2; ++i){
                for(int j = 0; j < 2; ++j){
                    cin >> x[i][j];
                }
            }
            seg.update(hld.edge(a[i], b[i]), x);
        }
        else{
            int i, j;
            cin >> i >> j;
            auto sections = hld.get_sections(i, j, true);
            sort(begin(sections), end(sections));
            S ans = E;
            for(auto& [l, r] : sections){
                ans = op(ans, seg.query(l, r));
            }
            cout << ans[0][0] << ' ' << ans[0][1] << ' ';
            cout << ans[1][0] << ' ' << ans[1][1] << '\n';
        }
    }

    return 0;
}
0