結果

問題 No.2396 等差二項展開
ユーザー 👑 p-adicp-adic
提出日時 2022-11-11 01:41:12
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 917 ms / 6,000 ms
コード長 2,986 bytes
コンパイル時間 841 ms
コンパイル使用メモリ 75,524 KB
最終ジャッジ日時 2025-02-08 19:39:01
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 31
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdint.h>
using namespace std;

using uint = unsigned int;
using ll = long long;

#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) 
#define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE 
#define CIN( LL , A ) LL A; cin >> A 
#define ASSERT( A , MIN , MAX ) assert( MIN <= A && A <= MAX ) 
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX ) 
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) 
#define QUIT return 0 
#define RETURN( ANSWER ) cout << ( ANSWER ) << "\n"; QUIT 

#define POWER( ANSWER , ARGUMENT , EXPONENT )				\
  TYPE_OF( ARGUMENT ) ANSWER{ 1 };					\
  {									\
    TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT );	\
    TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT );	\
    while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){			\
      if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){			\
	ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER;			\
      }									\
      ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER;	\
      EXPONENT_FOR_SQUARE_FOR_POWER /= 2;				\
    }									\
  }									\


#include <cassert>

#define MAIN main

inline CEXPR( uint , bound_L , 100 );

class Polynomial
{
public:
  vector<ll> m_f;
  static ll g_M;
  static uint g_L;
  static ll g_B;
  inline Polynomial() : m_f( g_L ) {};
  inline Polynomial( const ll& c ) : m_f( g_L ) { m_f[0] = c; };
  inline Polynomial( const Polynomial& g ) : m_f( g.m_f ) {};
  inline Polynomial& operator*=( const Polynomial& g );
};

ll Polynomial::g_M = 1;
uint Polynomial::g_L = 1;
ll Polynomial::g_B = 1;

inline Polynomial& Polynomial::operator*=( const Polynomial& g )
{
  vector<ll> answer( g_L * 2 );
  FOR( i , 0 , g_L ){
    const ll& fi = m_f[i];
    FOR( j , 0 , g_L ){
      ( answer[i + j] += fi * g.m_f[j] ) %= g_B;
      if( answer[i + j] < 0 ){
	cout << "here" << endl;
      }
    }
  }
  FOR( k , 0 , g_L ){
    ( answer[k] += answer[ k + g_L ] * g_M ) %= g_B;
    if( answer[k] < 0 ){
      cout << "here" << endl;
    }
  }
  m_f = move( answer );
  return *this;
}

inline Polynomial operator*( const Polynomial& f , const Polynomial& g ) { return Polynomial( f ).operator*=( g ); }

int MAIN()
{
  UNTIE;
  CEXPR( ll , bound_N , 1000000000000000000 );
  CIN_ASSERT( N , 1 , bound_N );
  CIN_ASSERT( M , 1 , bound_N );
  CEXPR( uint , bound_L , 1000 );
  CIN_ASSERT( L , 1 , bound_L );
  Polynomial::g_L = L;
  CIN_ASSERT( K , 0 , L - 1 );
  CEXPR( ll , bound_B , 1000000000 );
  CIN_ASSERT( B , 1 , bound_B );
  Polynomial::g_B = B;
  Polynomial::g_M = M % B;
  Polynomial f{};
  f.m_f[0] = 1;
  if( L == 1 ){
    f.m_f[0] += Polynomial::g_M;
  } else {
    f.m_f[1] = 1;
  }
  POWER( answer , f , N );
  RETURN( answer.m_f[K] );
}
0