結果

問題 No.2097 AND^k
ユーザー chro_96chro_96
提出日時 2022-11-13 23:38:40
言語 C
(gcc 12.3.0)
結果
TLE  
実行時間 -
コード長 4,762 bytes
コンパイル時間 1,328 ms
コンパイル使用メモリ 33,664 KB
実行使用メモリ 22,528 KB
最終ジャッジ日時 2024-09-15 05:02:16
合計ジャッジ時間 8,076 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 13 ms
17,408 KB
testcase_01 AC 12 ms
17,408 KB
testcase_02 AC 12 ms
17,280 KB
testcase_03 AC 13 ms
17,408 KB
testcase_04 AC 14 ms
17,280 KB
testcase_05 AC 12 ms
17,280 KB
testcase_06 AC 12 ms
17,280 KB
testcase_07 AC 13 ms
17,408 KB
testcase_08 TLE -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <stdio.h>

long long mod_num = 998244353LL;
long long root = 3LL;
int length = 998244352;
long long inverse_root = 0LL;
long long inverse_l = 0LL;

long long power_mod (long long a, long long b, long long p) {
  long long ans = 0LL;
  
  a %= p;
  
  if (b <= 0LL) {
    return 1LL;
  }
  
  ans = power_mod(a, b/2LL, p);
  ans = (ans * ans) % p;
  if (b%2LL == 1LL) {
    ans = (ans * a) % p;
  }
  
  return ans;
}

void setup_ntt (int l) {
  int tmp_length = 4;
  
  while(tmp_length < 2*l) {
    tmp_length *= 4;
  }
  
  root = power_mod(root, length / tmp_length, mod_num);
  inverse_root = power_mod(root, mod_num-2LL, mod_num);
  inverse_l = power_mod((long long) tmp_length, mod_num-2LL, mod_num);
  length = tmp_length;
  
  return;
}

void ntt_4n (long long *a, long long root) {
  int log = 1;
  long long root_1_4 = root;
  
  while ((1<<(2*log)) < length) {
    log++;
    root_1_4 *= root_1_4;
    root_1_4 %= mod_num;
    root_1_4 *= root_1_4;
    root_1_4 %= mod_num;
  }
  
  for (int i = 0; i < log; i++) {
    int step = (1<<(2*(log-i-1)));
    int cnt = length/(4*step);
    long long tmp_root = 1LL;
    for (int j = 0; j < step; j++) {
      for (int k = 0; k < cnt; k++) {
        long long tmp1 = a[4*k*step+j]+a[(4*k+1)*step+j]+a[(4*k+2)*step+j]+a[(4*k+3)*step+j];
        long long tmp2 = a[4*k*step+j]+root_1_4*a[(4*k+1)*step+j]-a[(4*k+2)*step+j]-(root_1_4*a[(4*k+3)*step+j])%mod_num+2LL*mod_num;
        long long tmp3 = a[4*k*step+j]-a[(4*k+1)*step+j]+a[(4*k+2)*step+j]-a[(4*k+3)*step+j]+2LL*mod_num;
        long long tmp4 = a[4*k*step+j]-(root_1_4*a[(4*k+1)*step+j])%mod_num-a[(4*k+2)*step+j]+root_1_4*a[(4*k+3)*step+j]+2LL*mod_num;
        long long tmp_tmp_root = 1LL;
        a[4*k*step+j] = tmp1 % mod_num;
        a[(4*k+1)*step+j] = tmp2 % mod_num;
        a[(4*k+2)*step+j] = tmp3 % mod_num;
        a[(4*k+3)*step+j] = tmp4 % mod_num;
        for (int l = 0; l < 4; l++) {
          a[(4*k+l)*step+j] *= tmp_tmp_root;
          a[(4*k+l)*step+j] %= mod_num;
          tmp_tmp_root *= tmp_root;
          tmp_tmp_root %= mod_num;
        }
      }
      tmp_root = (tmp_root*root)%mod_num;
    }
    root *= root;
    root %= mod_num;
    root *= root;
    root %= mod_num;
  }
  
  for (int i = 0; i < length; i++) {
    int idx = 0;
    int tmp = i;
    for (int j = 0; j < log; j++) {
      idx <<= 2;
      idx += (tmp&3);
      tmp >>= 2;
    }
    if (i < idx) {
      long long swap = a[i];
      a[i] = a[idx];
      a[idx] = swap;
    }
  }
  
  return;
}

int main () {
  int n = 0;
  int m = 0;
  int l = 0;
  
  int res = 0;
  
  long long ans[600000] = {};
  long long work[2][600000] = {};
  
  long long pow2 = 2LL;
  long long fact[100001] = {};
  long long invf[100001] = {};
  
  res = scanf("%d", &n);
  res = scanf("%d", &m);
  res = scanf("%d", &l);
  
  fact[0] = 1LL;
  for (int i = 0; i < l; i++) {
    fact[i+1] = fact[i];
    fact[i+1] *= (long long) (i+1);
    fact[i+1] %= mod_num;
  }
  
  invf[l] = power_mod(fact[l], mod_num-2LL, mod_num);
  for (int i = l; i > 0; i--) {
    invf[i-1] = invf[i];
    invf[i-1] *= (long long)i;
    invf[i-1] %= mod_num;
  }
  
  setup_ntt(l+1);
  
  work[0][0] = power_mod(2LL, (long long)n, mod_num);
  for (int i = 1; i <= l; i++) {
    work[0][i] = invf[i];
  }
  
  for (int i = 0; i <= l; i++) {
    work[1][i] = work[0][i];
  }
  ntt_4n(work[1], root);
  
  if (m%2 == 1) {
    for (int i = 0; i <= l; i++) {
      ans[i] = work[0][i];
    }
  } else {
    ans[0] = 1LL;
  }
  
  m /= 2;
  
  while (m > 0) {
    long long p = 1LL;
    for (int j = 0; j <= l; j++) {
      work[0][j] *= p;
      work[0][j] %= mod_num;
      p = (p*pow2)%mod_num;
    }
    ntt_4n(work[0], root);
    for (int j = 0; j < length; j++) {
      work[0][j] *= work[1][j];
      work[0][j] %= mod_num;
    }
    ntt_4n(work[0], inverse_root);
    for (int j = 0; j <= l; j++) {
      work[0][j] *= inverse_l;
      work[0][j] %= mod_num;
      work[1][j] = work[0][j];
    }
    for (int j = l+1; j < length; j++) {
      work[0][j] = 0LL;
      work[1][j] = 0LL;
    }
    ntt_4n(work[1], root);
    pow2 = (pow2*pow2)%mod_num;
    if (m%2 == 1) {
      long long p = 1LL;
      for (int i = 0; i <= l; i++) {
        ans[i] *= p;
        ans[i] %= mod_num;
        p = (p*pow2)%mod_num;
      }
      for (int i = l+1; i < length; i++) {
        ans[i] = 0LL;
      }
      ntt_4n(ans, root);
      for (int i = 0; i < length; i++) {
        ans[i] *= work[1][i];
        ans[i] %= mod_num;
      }
      ntt_4n(ans, inverse_root);
      for (int i = 0; i <= l; i++) {
        ans[i] *= inverse_l;
        ans[i] %= mod_num;
      }
    }
    m /= 2;
  }
  
  for (int i = 0; i < l; i++) {
    printf("%lld\n", (ans[i+1]*fact[i+1])%mod_num);
  }
  
  return 0;
}
0