結果
問題 | No.2149 Vanitas Vanitatum |
ユーザー | hotman78 |
提出日時 | 2022-11-18 00:40:28 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 86 ms / 2,000 ms |
コード長 | 17,656 bytes |
コンパイル時間 | 2,228 ms |
コンパイル使用メモリ | 214,568 KB |
実行使用メモリ | 8,560 KB |
最終ジャッジ日時 | 2024-09-19 11:04:22 |
合計ジャッジ時間 | 3,662 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 1 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 1 ms
6,940 KB |
testcase_07 | AC | 1 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,940 KB |
testcase_10 | AC | 1 ms
6,940 KB |
testcase_11 | AC | 1 ms
6,944 KB |
testcase_12 | AC | 33 ms
6,944 KB |
testcase_13 | AC | 8 ms
6,940 KB |
testcase_14 | AC | 37 ms
6,944 KB |
testcase_15 | AC | 25 ms
6,940 KB |
testcase_16 | AC | 10 ms
6,944 KB |
testcase_17 | AC | 17 ms
6,940 KB |
testcase_18 | AC | 33 ms
6,944 KB |
testcase_19 | AC | 31 ms
6,944 KB |
testcase_20 | AC | 44 ms
6,944 KB |
testcase_21 | AC | 10 ms
6,944 KB |
testcase_22 | AC | 44 ms
6,940 KB |
testcase_23 | AC | 39 ms
6,940 KB |
testcase_24 | AC | 22 ms
6,940 KB |
testcase_25 | AC | 23 ms
6,944 KB |
testcase_26 | AC | 86 ms
8,560 KB |
ソースコード
#line 1 "main.cpp" #include<bits/stdc++.h> using namespace std; #line 2 "/home/hotman/kyopro/library/cpplib/math/ACL_modint998244353.hpp" #include <cassert> #include <numeric> #include <type_traits> #ifdef _MSC_VER #include <intrin.h> #endif #include <utility> #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } struct barrett { unsigned int _m; unsigned long long im; explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal } // namespace atcoder #include <cassert> #include <numeric> #include <type_traits> namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder using mint=atcoder::modint998244353; #line 4 "/home/hotman/kyopro/library/cpplib/math/ACL_modint_base.hpp" std::ostream& operator<<(std::ostream& lhs, const mint& rhs) noexcept { lhs << rhs.val(); return lhs; } std::istream& operator>>(std::istream& lhs,mint& rhs) noexcept { long long x; lhs >> x; rhs=x; return lhs; } int MOD_NOW=-1; int sz=0; std::vector<mint>fact_table,fact_inv_table; void update(int x){ if(MOD_NOW!=mint::mod()||sz==0){ fact_table.assign(1,1); fact_inv_table.assign(1,1); sz=1; MOD_NOW=mint::mod(); } while(sz<=x){ fact_table.resize(sz*2); fact_inv_table.resize(sz*2); for(int i=sz;i<sz*2;++i){ fact_table[i]=fact_table[i-1]*i; } fact_inv_table[sz*2-1]=fact_table[sz*2-1].inv(); for(int i=sz*2-2;i>=sz;--i){ fact_inv_table[i]=fact_inv_table[i+1]*(i+1); } sz*=2; } } inline mint fact(int x){ assert(x>=0); update(x); return fact_table[x]; } inline mint fact_inv(int x){ assert(x>=0); update(x); return fact_inv_table[x]; } inline mint comb(int x,int y){ if(x<0||x<y||y<0)return 0; return fact(x)*fact_inv(y)*fact_inv(x-y); } inline mint perm(int x,int y){ return fact(x)*fact_inv(y); } inline mint multi_comb(int x,int y){ return comb(x+y-1,y); } #line 4 "main.cpp" int main(){ int n; cin>>n; vector<int> a(n); for(int i=0;i<n;++i)cin>>a[i]; vector<int>v; for(int i=0;i<n;++i){ for(int j=(i==0?0:a[i-1]);j<a[i];++j){ v.emplace_back(1); } v.emplace_back(0); } vector<int> v1,v2; for(int i=0;i<v.size();++i){ if(i%2==0)v1.emplace_back(v[i]); else v2.emplace_back(v[i]); } reverse(v1.begin(),v1.end()); while(v1.size()&&v1.back()==0)v1.pop_back(); reverse(v1.begin(),v1.end()); while(v1.size()&&v1.back()==1)v1.pop_back(); reverse(v2.begin(),v2.end()); while(v2.size()&&v2.back()==0)v2.pop_back(); reverse(v2.begin(),v2.end()); while(v2.size()&&v2.back()==1)v2.pop_back(); vector<int> b,c; for(int i=0;i<v1.size();++i){ if(b.size())b.emplace_back(b.back()); else b.emplace_back(0); while(i<v1.size()&&v1[i]==1){ b.back()++; ++i; } } for(int i=0;i<v2.size();++i){ if(c.size())c.emplace_back(c.back()); else c.emplace_back(0); while(i<v2.size()&&v2[i]==1){ c.back()++; ++i; } } mint ans=1; for(int i=0;i<b.size();++i){ int tmp=0; for(int j=0;j<b[i];++j){ while(b[tmp]<=j)tmp++; ans/=b[i]-j+i-tmp; } } for(int i=0;i<c.size();++i){ int tmp=0; for(int j=0;j<c[i];++j){ while(c[tmp]<=j)tmp++; ans/=c[i]-j+i-tmp; } } int asum=accumulate(a.begin(),a.end(),0); int bsum=accumulate(b.begin(),b.end(),0); for(int i=0;i<bsum;++i){ ans*=i+1; } int csum=accumulate(c.begin(),c.end(),0); for(int i=0;i<csum;++i){ ans*=i+1; } if(asum!=2*(bsum+csum)){ cout<<0<<endl; }else{ cout<<ans*comb(bsum+csum,bsum)<<endl; } }