結果

問題 No.213 素数サイコロと合成数サイコロ (3-Easy)
ユーザー t98slidert98slider
提出日時 2022-11-18 02:00:59
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 391 ms / 3,000 ms
コード長 16,809 bytes
コンパイル時間 1,837 ms
コンパイル使用メモリ 178,236 KB
実行使用メモリ 6,816 KB
最終ジャッジ日時 2024-09-19 12:05:40
合計ジャッジ時間 3,200 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 391 ms
6,816 KB
testcase_01 AC 353 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using ll = long long;

namespace internal {
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}
struct barrett {
    unsigned int _m;
    unsigned long long im;
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
    unsigned int umod() const { return _m; }
    unsigned int mul(unsigned int a, unsigned int b) const {
        unsigned long long z = a;
        z *= b;
        unsigned int v = (unsigned int)(z % _m);
        return v;
    }
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;
    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;
        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }
        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;
template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;
template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
}  // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;
  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }
    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    unsigned int val() const { return _v; }
    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }
    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }
    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }
    //自分で加えたもの
    friend istream& operator>>(istream& os,mint& rhs) noexcept {
        long long v;
        rhs = mint{(os >> v, v)};
        return os;
    }
    friend constexpr ostream& operator << (ostream &os, const mint& rhs) noexcept {
        return os << rhs._v;
    }
  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;
  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }
    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    unsigned int val() const { return _v; }
    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }
    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }
    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }
    //自分で加えたもの
    friend istream& operator>>(istream& os,mint& rhs) noexcept {
        long long v;
        rhs = mint{(os >> v, v)};
        return os;
    }
    friend constexpr ostream& operator << (ostream &os, const mint& rhs) noexcept {
        return os << rhs._v;
    }
  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
}  // namespace internal
using mint = modint1000000007;
using mint2 = modint998244353;

template <class T, size_t N> struct Matrix {
    std::array<std::array<T, N>, N> A{};
    Matrix() {}
    Matrix(const std::array<std::array<T, N>, N> &M) : A(M){}
    Matrix(const std::vector<std::vector<T>> &M)  {
        for(size_t i = 0; i < N; i++){
            for(size_t j = 0; j < N; j++){
                A[i][j] = M[i][j];
            }
        }
    }
    const std::array<T, N>& operator[](int i) const { return A[i]; }
    std::array<T, N>& operator[](int i) { return A[i]; }

    Matrix& operator+=(const Matrix& rhs) {
        for(size_t i = 0; i < N; i++){
            for(size_t j = 0; j < N; j++){
                A[i][j] += rhs[i][j];
            }
        }
        return *this;
    }
    Matrix& operator-=(const Matrix& rhs) {
        for(size_t i = 0; i < N; i++){
            for(size_t j = 0; j < N; j++){
                A[i][j] -= rhs[i][j];
            }
        }
        return *this;
    }
    Matrix& operator*=(const Matrix& rhs) {
        std::array<std::array<T, N>, N> res{};
        for(size_t i = 0; i < N; i++){
            for(size_t j = 0; j < N; j++){
                for(size_t k = 0; k < N; k++){
                    res[i][j] += A[i][k] * rhs[k][j];
                }
            }
        }
        swap(A, res);
        return *this;
    }
    Matrix& operator+() const { return *this; }
    Matrix& operator-() const { return Matrix() - *this; }
    friend Matrix operator+(const Matrix& lhs, const Matrix& rhs) {
        return Matrix(lhs) += rhs;
    }
    friend Matrix operator-(const Matrix& lhs, const Matrix& rhs) {
        return Matrix(lhs) -= rhs;
    }
    friend Matrix operator*(const Matrix& lhs, const Matrix& rhs) {
        return Matrix(lhs) *= rhs;
    }
    friend bool operator==(const Matrix& lhs, const Matrix& rhs) {
        return (lhs.A == rhs.A);
    }
    friend bool operator!=(const Matrix& lhs, const Matrix& rhs) {
        return (lhs.A != rhs.A);
    }
    Matrix pow(long long v){
        Matrix res, temp = A;
        for(size_t i = 0; i < N; i++)res[i][i] = 1;
        while(v){
            if(v & 1)res *= temp;
            temp *= temp;
            v >>= 1;
        }
        return res;
    }
    friend std::ostream& operator << (std::ostream &os, const Matrix& rhs) noexcept {
        for(size_t i = 0; i < N; i++){
            if(i) os << '\n';
            for(size_t j = 0; j < N; j++){
                os << (j ? " " : "") << rhs[i][j];
            }
        }
        return os;
    }
};

/*int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    ll N, P, C;
    cin >> N >> P >> C;
    vector<int> D1 = {2, 3, 5, 7, 11, 13}, D2 = {4, 6, 8, 9, 10, 12};
    vector<mint> dp(131);
    dp[0] = 1;
    while(P--){
        vector<mint> ndp(131);
        for(int i = 117; i >= 0; i--){
            for(int j = 0; j < D1.size(); j++){
                ndp[i + D1[j]] += dp[i];
            }
        }
        swap(ndp, dp);
    }
    while(C--){
        vector<mint> ndp(131);
        for(int i = 117; i >= 0; i--){
            for(int j = 0; j < D2.size(); j++){
                ndp[i + D2[j]] += dp[i];
            }
        }
        swap(ndp, dp);
    }
    Matrix<mint, 131> Mt;
    for(int i = 1; i <= 130; i++){
        Mt[i - 1][0] = dp[i];
        Mt[i - 1][i] = 1;
    }
    ll e = max(0ll, N - 130);
    auto A = Mt.pow(e);
    vector<mint> dp2(min(N, 130ll) + 1);
    for(int i = 0; i <= 130; i++){
        dp2[0] += A[0][i];
    }
    for(int i = 0; i + 1 < dp2.size(); i++){
        for(int j = 1; j < dp.size(); j++){
            dp2[min(i + j, int(dp2.size()) - 1)] += dp2[i] * dp[j];
        }
    }
    cout << dp2.back() << '\n';
}*/

int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    ll N, P, C;
    cin >> N >> P >> C;
    vector<int> D1 = {2, 3, 5, 7, 11, 13}, D2 = {4, 6, 8, 9, 10, 12};
    vector<mint> dp1(66), dp2(61), dp(131);
    function<void(int,int,int)> dfs1 = [&](int i, int s, int v){
        if(i == P){dp1[v]++; return; }
        for(int j = s; j < 6; j++)dfs1(i + 1, j, v + D1[j]);
    };
    function<void(int,int,int)> dfs2 = [&](int i, int s, int v){
        if(i == C){dp2[v]++; return; }
        for(int j = s; j < 6; j++)dfs2(i + 1, j, v + D2[j]);
    };
    dfs1(0, 0, 0), dfs2(0, 0, 0);
    for(int i = 0; i < 66; i++){
        for(int j = 0; j < 61; j++){
            dp[i + j] += dp1[i] * dp2[j];
        }
    }
    Matrix<mint, 131> Mt;
    for(int i = 1; i <= 130; i++){
        Mt[i - 1][0] = dp[i];
        Mt[i - 1][i] = 1;
    }
    auto A = Mt.pow(N);
    int r = min(N, 130ll);
    vector<mint> dp3(r + 1);
    for(int i = 0; i <= r; i++){
        dp3.rbegin()[i] = A[0][i];
    }
    mint ans = dp3.back();
    for(int i = r - 1; i >= 0; i--){
        for(int j = r + 1 - i; j < dp.size(); j++){
            ans += dp3[i] * dp[j];
        }
    }
    cout << ans << '\n';
}
0