結果
問題 | No.1521 Playing Musical Chairs Alone |
ユーザー | Slephy |
提出日時 | 2022-11-18 11:48:04 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 10,707 bytes |
コンパイル時間 | 4,530 ms |
コンパイル使用メモリ | 269,336 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-19 19:21:17 |
合計ジャッジ時間 | 28,771 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 3 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 509 ms
5,376 KB |
testcase_06 | AC | 439 ms
5,376 KB |
testcase_07 | AC | 674 ms
5,376 KB |
testcase_08 | AC | 39 ms
5,376 KB |
testcase_09 | AC | 29 ms
5,376 KB |
testcase_10 | AC | 3 ms
5,376 KB |
testcase_11 | AC | 1,353 ms
5,376 KB |
testcase_12 | AC | 1 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 6 ms
5,376 KB |
testcase_15 | AC | 1,509 ms
5,376 KB |
testcase_16 | TLE | - |
testcase_17 | TLE | - |
testcase_18 | AC | 1,792 ms
5,376 KB |
testcase_19 | AC | 1,799 ms
5,376 KB |
testcase_20 | TLE | - |
testcase_21 | AC | 1,999 ms
5,376 KB |
testcase_22 | AC | 1,886 ms
5,376 KB |
testcase_23 | AC | 1,347 ms
5,376 KB |
testcase_24 | AC | 1,863 ms
5,376 KB |
testcase_25 | TLE | - |
ソースコード
//#define _GLIBCXX_DEBUG #include <bits/stdc++.h> using namespace std; #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; using mint = modint1000000007; // using mint = modint998244353; // using mint = modint; // const int MOD = mint::mod(); #endif #ifdef LOCAL_DEBUG #define cout cout<<' ' #endif using ll = long long; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; // constexpr int MOD = (int)1e9 + 7; // constexpr int MOD = (int)998244353; constexpr int INF = (int)1e9 + 1001010; constexpr ll llINF = (ll)4e18 + 11000010; constexpr double PI = 3.14159265358979; constexpr double EPS = 1e-10; #define Isize(x) (int)(size(x)) #define ALL(x) (x).begin(),(x).end() #define RALL(x) (x).rbegin(),(x).rend() #define UNIQUE(x) (x).erase(unique(ALL(x)), (x).end()); #define endn "\n" #define SUM(v) accumulate(ALL(v), 0LL) #define MIN(v) *min_element(ALL(v)) #define MAX(v) *max_element(ALL(v)) #define popcount __builtin_popcount #define popcountll __builtin_popcountll template <class T> inline vector<vector<T>> vector2(const size_t &i, const size_t &j, const T &init = T()) { return vector<vector<T>>(i, vector<T>(j, init)); } template <class T> inline vector<vector<vector<T>>> vector3(const size_t &i, const size_t &j, const int &k, const T &init = T()) { return vector<vector<vector<T>>>(i, vector<vector<T>>(j, vector<T>(k, init))); } template <class T> inline vector<vector<vector<vector<T>>>> vector4(const size_t &i, const size_t &j, const size_t &k, const size_t &l, const T &init = T()) { return vector<vector<vector<vector<T>>>>(i, vector<vector<vector<T>>>(j, vector<vector<T>>(k, vector<T>(l, init)))); } const string VEC_ELEM_SEPARATION = " "; const string VEC_VEC_SEPARATION = endn; template<class T> istream & operator >> (istream &i, vector<T> &A) {for(auto &I : A) {i >> I;} return i;} template<class T> ostream & operator << (ostream &o, const vector<vector<T>> &A) {int i=A.size(); for(auto &I : A){o << I << (--i ? VEC_VEC_SEPARATION : "");} return o;} template<class T> ostream & operator << (ostream &o, const vector<T> &A) {int i=A.size(); for(auto &I : A){o << I << (--i ? VEC_ELEM_SEPARATION : "");} return o;} template<class T> ostream & operator << (ostream &o, const deque<T> &A) {int i=A.size(); for(auto &I : A){o << I << (--i ? VEC_ELEM_SEPARATION : "");} return o;} template<class T, class U> istream & operator >> (istream &i, pair<T,U> &A) {i >> A.first >> A.second; return i;} template<class T, class U> ostream & operator << (ostream &o, const pair<T,U> &A) {o << A.first << " " << A.second; return o;} template<class T, class U, class V> istream & operator >> (istream &i, tuple<T,U,V>&A) {i >> get<0>(A) >> get<1>(A) >> get<2>(A); return i;} template<class T, class U, class V> ostream & operator << (ostream &o, const tuple<T,U,V> &A) {o << get<0>(A) << " " << get<1>(A) << " " << get<2>(A); return o;} template<class T> vector<T>& operator ++(vector<T> &A, int n) {for(auto &I : A) {I++;} return A;} template<class T> vector<T>& operator --(vector<T> &A, int n) {for(auto &I : A) {I--;} return A;} template<class T, class U> bool chmax(T &a, const U &b){return ((a < b) ? (a = b, true) : false);} template<class T, class U> bool chmin(T &a, const U &b){return ((a > b) ? (a = b, true) : false);} ll floor(ll a, ll b){assert(b != 0); return((a%b != 0 && ((a>0) != (b>0))) ? a/b-1 : a/b);} ll ceil (ll a, ll b){assert(b != 0); return((a%b != 0 && ((a>0) == (b>0))) ? a/b+1 : a/b);} ll gcd(ll a, ll b){return ((b==0) ? a : gcd(b, a%b));} ll lcm(ll a, ll b){return a / gcd(a,b) * b;} bool is_in(ll inf, ll n, ll sup){return(inf <= n && n <= sup);} // ================================== ここまでテンプレ ================================== template<class T> class Matrix{ public: // コンストラクタ Matrix(size_t h, size_t w, T init = T()) : mat(vector<vector<T>>(h, vector<T>(w, init))) {} Matrix(const vector<vector<T>> &mat) : mat(mat) {} Matrix(const Matrix<T> &mat) = default; Matrix(Matrix<T> &&mat) = default; // 代入演算子のオーバーロード Matrix<T>& operator = (const Matrix<T> &mat_) = default; // copy Matrix<T>& operator = (Matrix<T> &&mat_) = default; // move // ゲッター size_t height() const {return mat.size();} size_t width() const {return ((height() > 0) ? mat[0].size() : 0);} // (TODO: 0行目がないときの対処) // 添え字演算子のオーバーロード vector<T>& operator [](int index){ assert(0 <= index && index < height()); return mat[index]; } const vector<T> operator [](int index)const{ assert(0 <= index && index < height()); return mat[index]; } // イテレータ auto begin() {return mat.begin();} auto end() {return mat.end();} // 入出力ストリーム friend istream & operator >> (istream &i, Matrix<T> &mat) {for(auto &I : mat) for(auto &J : I){i >> J;} return i;} friend ostream & operator << (ostream &o, const Matrix &A) {o << A.mat; return o;} // 単位行列 static Matrix<T> identity(size_t size){ Matrix<T> res(size, size, 0); for(int i = 0; i < size; i++){ res[i][i] = 1; } return res; } static Matrix<T> identity(const Matrix<T> &mat_like){ assert(mat_like.height() == mat_like.width()); return Matrix<T>::identity(mat_like.height()); } static Matrix<T> zero(size_t size){ return Matrix<T>(size, size, 0); } static Matrix<T> zero(size_t height, size_t width){ return Matrix<T>(height, width, 0); } static Matrix<T> zero(const Matrix<T> &mat_like){ return Matrix<T>::zero(mat_like.height(), mat_like.width()); } // 算術演算子のオーバーロード Matrix<T> operator +(){ return *this; } Matrix<T> operator -(){ Matrix<T> res(height(), width()); for(int i = 0; i < height(); i++){ for(int j = 0; j < width(); j++){ res[i][j] = -mat[i][j]; } } return res; } Matrix<T>& operator +=(const Matrix<T> &other){ assert(height() == other.height() && width() == other.width()); for(int i = 0; i < height(); i++){ for(int j = 0; j < width(); j++){ (*this)[i][j] += other[i][j]; } } return *this; } Matrix<T>& operator -=(const Matrix<T> &other){ assert(height() == other.height() && width() == other.width()); for(int i = 0; i < height(); i++){ for(int j = 0; j < width(); j++){ (*this)[i][j] -= other[i][j]; } } return *this; } Matrix<T>& operator *=(const Matrix<T> &other){ assert(width() == other.height()); Matrix<T> res(height(), other.width()); for(int i = 0; i < height(); i++){ for(int j = 0; j < other.width(); j++){ for(int k = 0; k < width(); k++){ res[i][j] += (*this)[i][k] * other[k][j]; // res[i][j] = (res[i][j] + (*this)[i][k] * other[k][j]); } } } swap(res, *this); return *this; } Matrix<T>& operator ^=(unsigned long long n){ assert(height() == width()); Matrix<T> res = Matrix<T>::identity(height()); while(n > 0){ if(n & 1) res *= *this; *this *= *this; n >>= 1; } swap(res, *this); return *this; } Matrix<T> operator +(const Matrix<T> &other) const { return Matrix<T>(*this) += other; } Matrix<T> operator -(const Matrix<T> &other) const { return Matrix<T>(*this) -= other; } Matrix<T> operator *(const Matrix<T> &other) const { return Matrix<T>(*this) *= other; } Matrix<T> operator ^(unsigned long long n) const { return Matrix<T>(*this) ^= n; } friend Matrix<T>& operator +=(Matrix<T> &mat, const T &val){ for(int i = 0; i < mat.height(); i++) for(int j = 0; j < mat.width(); j++) mat[i][j] += val; return mat; } friend Matrix<T>& operator -=(Matrix<T> &mat, const T &val){ for(int i = 0; i < mat.height(); i++) for(int j = 0; j < mat.width(); j++) mat[i][j] -= val; return mat; } friend Matrix<T>& operator *=(Matrix<T> &mat, const T &val){ for(int i = 0; i < mat.height(); i++) for(int j = 0; j < mat.width(); j++) mat[i][j] *= val; return mat; } friend Matrix<T> operator +(const Matrix<T> &mat, const T &val){ Matrix<T> res(mat.height(), mat.width()); for(int i = 0; i < mat.height(); i++) for(int j = 0; j < mat.width(); j++) res[i][j] = mat[i][j] + val; return res; } friend Matrix<T> operator +(const T &val, const Matrix<T> &mat){ return mat + val; } friend Matrix<T> operator -(const Matrix<T> &mat, const T &val){ Matrix<T> res(mat.height(), mat.width()); for(int i = 0; i < mat.height(); i++) for(int j = 0; j < mat.width(); j++) res[i][j] = mat[i][j] - val; return res; } friend Matrix<T> operator -(const T &val, const Matrix<T> &mat){ Matrix<T> res(mat.height(), mat.width()); for(int i = 0; i < mat.height(); i++) for(int j = 0; j < mat.width(); j++) res[i][j] = val - mat[i][j]; return res; } friend Matrix<T> operator *(const Matrix<T> &mat, const T &val){ Matrix<T> res(mat.height(), mat.width()); for(int i = 0; i < mat.height(); i++) for(int j = 0; j < mat.width(); j++) res[i][j] = mat[i][j] * val; return res; } friend Matrix<T> operator *(const T &val, const Matrix<T> &mat){ return mat * val; } // 行列累乗 Matrix<T> pow(unsigned long long n) const{ assert(height() == width()); Matrix<T> res = Matrix<T>::identity(height()); Matrix<T> tmp = *this; while(n > 0){ if(n & 1) res *= tmp; tmp *= tmp; n >>= 1; } return res; } // メンバ変数 private: vector<vector<T>> mat; // size_t h, w; }; int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); int n, k, l; cin >> n >> k >> l; Matrix<mint> mat(n, n, 0); for(int i = 0; i < n; i++){ for(int j = 1; j <= l; j++){ mat[i][(i+j)%n] = 1; } } Matrix<mint> init(1, n, 0); init[0][0] = 1; // auto ans = init * mat.pow(k); auto ans = init * (mat^k); for(int i = 0; i < n; i++){ cout << ans[0][i].val() << endn; } return 0; }