結果

問題 No.1521 Playing Musical Chairs Alone
ユーザー SlephySlephy
提出日時 2022-11-18 11:50:32
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 135 ms / 2,000 ms
コード長 7,213 bytes
コンパイル時間 4,509 ms
コンパイル使用メモリ 269,164 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-19 19:22:28
合計ジャッジ時間 6,007 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 38 ms
5,376 KB
testcase_06 AC 27 ms
5,376 KB
testcase_07 AC 49 ms
5,376 KB
testcase_08 AC 6 ms
5,376 KB
testcase_09 AC 5 ms
5,376 KB
testcase_10 AC 1 ms
5,376 KB
testcase_11 AC 82 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 90 ms
5,376 KB
testcase_16 AC 109 ms
5,376 KB
testcase_17 AC 106 ms
5,376 KB
testcase_18 AC 95 ms
5,376 KB
testcase_19 AC 97 ms
5,376 KB
testcase_20 AC 106 ms
5,376 KB
testcase_21 AC 106 ms
5,376 KB
testcase_22 AC 97 ms
5,376 KB
testcase_23 AC 84 ms
5,376 KB
testcase_24 AC 95 ms
5,376 KB
testcase_25 AC 135 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

//#define _GLIBCXX_DEBUG
#include <bits/stdc++.h>
using namespace std;
#if __has_include(<atcoder/all>)
    #include <atcoder/all>
    using namespace atcoder;
    using mint = modint1000000007;
    // using mint = modint998244353;
    // using mint = modint;
    // const int MOD = mint::mod();
#endif
#ifdef LOCAL_DEBUG
    #define cout cout<<' '
#endif
using ll = long long;
template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;
// constexpr int MOD = (int)1e9 + 7;
// constexpr int MOD = (int)998244353;
constexpr int INF = (int)1e9 + 1001010;
constexpr ll llINF = (ll)4e18 + 11000010;
constexpr double PI = 3.14159265358979;
constexpr double EPS = 1e-10;
#define Isize(x) (int)(size(x))
#define ALL(x) (x).begin(),(x).end()
#define RALL(x) (x).rbegin(),(x).rend()
#define UNIQUE(x) (x).erase(unique(ALL(x)), (x).end());
#define endn "\n"
#define SUM(v) accumulate(ALL(v), 0LL)
#define MIN(v) *min_element(ALL(v))
#define MAX(v) *max_element(ALL(v))
#define popcount __builtin_popcount
#define popcountll __builtin_popcountll

template <class T> inline vector<vector<T>> vector2(const size_t &i, const size_t &j, const T &init = T()) {
    return vector<vector<T>>(i, vector<T>(j, init));
}
template <class T> inline vector<vector<vector<T>>> vector3(const size_t &i, const size_t &j, const int &k, const T &init = T()) {
    return vector<vector<vector<T>>>(i, vector<vector<T>>(j, vector<T>(k, init)));
}
template <class T> inline vector<vector<vector<vector<T>>>> vector4(const size_t &i, const size_t &j, const size_t &k, const size_t &l, const T &init = T()) {
    return vector<vector<vector<vector<T>>>>(i, vector<vector<vector<T>>>(j, vector<vector<T>>(k, vector<T>(l, init))));
}

const string VEC_ELEM_SEPARATION = " ";
const string VEC_VEC_SEPARATION = endn;
template<class T> istream & operator >> (istream &i, vector<T> &A) {for(auto &I : A) {i >> I;} return i;}
template<class T> ostream & operator << (ostream &o, const vector<vector<T>> &A) {int i=A.size(); for(auto &I : A){o << I << (--i ? VEC_VEC_SEPARATION : "");} return o;}
template<class T> ostream & operator << (ostream &o, const vector<T> &A) {int i=A.size(); for(auto &I : A){o << I << (--i ? VEC_ELEM_SEPARATION : "");} return o;}
template<class T> ostream & operator << (ostream &o, const deque<T> &A) {int i=A.size(); for(auto &I : A){o << I << (--i ? VEC_ELEM_SEPARATION : "");} return o;}
template<class T, class U> istream & operator >> (istream &i, pair<T,U> &A) {i >> A.first >> A.second; return i;}
template<class T, class U> ostream & operator << (ostream &o, const pair<T,U> &A) {o << A.first << " " << A.second; return o;}
template<class T, class U, class V> istream & operator >> (istream &i, tuple<T,U,V>&A) {i >> get<0>(A) >> get<1>(A) >> get<2>(A); return i;}
template<class T, class U, class V> ostream & operator << (ostream &o, const tuple<T,U,V> &A) {o << get<0>(A) << " " << get<1>(A) << " " << get<2>(A); return o;}

template<class T> vector<T>& operator ++(vector<T> &A, int n) {for(auto &I : A) {I++;} return A;}
template<class T> vector<T>& operator --(vector<T> &A, int n) {for(auto &I : A) {I--;} return A;}

template<class T, class U> bool chmax(T &a, const U &b){return ((a < b) ? (a = b, true) : false);}
template<class T, class U> bool chmin(T &a, const U &b){return ((a > b) ? (a = b, true) : false);}

ll floor(ll a, ll b){assert(b != 0); return((a%b != 0 && ((a>0) != (b>0))) ? a/b-1 : a/b);}
ll ceil (ll a, ll b){assert(b != 0); return((a%b != 0 && ((a>0) == (b>0))) ? a/b+1 : a/b);}
ll gcd(ll a, ll b){return ((b==0) ? a : gcd(b, a%b));}
ll lcm(ll a, ll b){return a / gcd(a,b) * b;}
bool is_in(ll inf, ll n, ll sup){return(inf <= n && n <= sup);}
// ================================== ここまでテンプレ ==================================

template< class T >
struct Matrix {
  vector< vector< T > > A;

  Matrix() {}

  Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {}

  Matrix(size_t n) : A(n, vector< T >(n, 0)) {};

  size_t size() const {
     if(A.empty()) return 0;
     assert(A.size() == A[0].size());
     return A.size();
  }

  size_t height() const {
    return (A.size());
  }

  size_t width() const {
    return (A[0].size());
  }

  inline const vector< T > &operator[](int k) const {
    return (A.at(k));
  }

  inline vector< T > &operator[](int k) {
    return (A.at(k));
  }

  static Matrix I(size_t n) {
    Matrix mat(n);
    for(int i = 0; i < n; i++) mat[i][i] = 1;
    return (mat);
  }

  Matrix &operator+=(const Matrix &B) {
    size_t n = height(), m = width();
    assert(n == B.height() && m == B.width());
    for(int i = 0; i < n; i++)
      for(int j = 0; j < m; j++)
        (*this)[i][j] += B[i][j];
    return (*this);
  }

  Matrix &operator-=(const Matrix &B) {
    size_t n = height(), m = width();
    assert(n == B.height() && m == B.width());
    for(int i = 0; i < n; i++)
      for(int j = 0; j < m; j++)
        (*this)[i][j] -= B[i][j];
    return (*this);
  }

  Matrix &operator*=(const Matrix &B) {
    size_t n = height(), m = B.width(), p = width();
    assert(p == B.height());
    vector< vector< T > > C(n, vector< T >(m, 0));
    for(int i = 0; i < n; i++)
      for(int j = 0; j < m; j++)
        for(int k = 0; k < p; k++)
          C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
    A.swap(C);
    return (*this);
  }

  Matrix &operator^=(long long k) {
    Matrix B = Matrix::I(height());
    while(k > 0) {
      if(k & 1) B *= *this;
      *this *= *this;
      k >>= 1LL;
    }
    A.swap(B.A);
    return (*this);
  }

  Matrix operator+(const Matrix &B) const {
    return (Matrix(*this) += B);
  }

  Matrix operator-(const Matrix &B) const {
    return (Matrix(*this) -= B);
  }

  Matrix operator*(const Matrix &B) const {
    return (Matrix(*this) *= B);
  }

  Matrix operator^(const long long k) const {
    return (Matrix(*this) ^= k);
  }

  friend ostream &operator<<(ostream &os, Matrix &p) {
    size_t n = p.height(), m = p.width();
    for(int i = 0; i < n; i++) {
      os << "[";
      for(int j = 0; j < m; j++) {
        os << p[i][j] << (j + 1 == m ? "]\n" : ",");
      }
    }
    return (os);
  }


  T determinant() {
    Matrix B(*this);
    assert(width() == height());
    T ret = 1;
    for(int i = 0; i < width(); i++) {
      int idx = -1;
      for(int j = i; j < width(); j++) {
        if(B[j][i] != 0) idx = j;
      }
      if(idx == -1) return (0);
      if(i != idx) {
        ret *= -1;
        swap(B[i], B[idx]);
      }
      ret *= B[i][i];
      T vv = B[i][i];
      for(int j = 0; j < width(); j++) {
        B[i][j] /= vv;
      }
      for(int j = i + 1; j < width(); j++) {
        T a = B[j][i];
        for(int k = 0; k < width(); k++) {
          B[j][k] -= B[i][k] * a;
        }
      }
    }
    return (ret);
  }
};

int main(){
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    int n, k, l; cin >> n >> k >> l;
    Matrix<mint> mat(n);
    for(int i = 0; i < n; i++){
        for(int j = 1; j <= l; j++){
            mat[i][(i+j)%n] = 1;
        }
    }

    Matrix<mint> init(1, n);
    init[0][0] = 1;

    auto ans = init * (mat^k);
    for(int i = 0; i < n; i++){
        cout << ans[0][i].val() << endn;
    }
    return 0;
}
0