結果
問題 | No.2125 Inverse Sum |
ユーザー | 👑 rin204 |
提出日時 | 2022-11-18 22:06:18 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,396 bytes |
コンパイル時間 | 149 ms |
コンパイル使用メモリ | 81,968 KB |
実行使用メモリ | 61,680 KB |
最終ジャッジ日時 | 2024-09-20 02:27:04 |
合計ジャッジ時間 | 2,363 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 40 ms
53,120 KB |
testcase_01 | AC | 39 ms
52,608 KB |
testcase_02 | AC | 36 ms
52,736 KB |
testcase_03 | AC | 36 ms
52,992 KB |
testcase_04 | AC | 36 ms
52,992 KB |
testcase_05 | WA | - |
testcase_06 | AC | 36 ms
52,964 KB |
testcase_07 | WA | - |
testcase_08 | AC | 36 ms
52,956 KB |
testcase_09 | AC | 36 ms
52,736 KB |
testcase_10 | AC | 37 ms
52,864 KB |
testcase_11 | AC | 37 ms
52,608 KB |
testcase_12 | AC | 38 ms
52,736 KB |
testcase_13 | AC | 38 ms
52,224 KB |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | AC | 37 ms
53,248 KB |
testcase_17 | AC | 37 ms
52,608 KB |
testcase_18 | AC | 36 ms
52,864 KB |
testcase_19 | AC | 37 ms
52,992 KB |
testcase_20 | AC | 37 ms
52,992 KB |
testcase_21 | AC | 37 ms
52,736 KB |
testcase_22 | WA | - |
testcase_23 | AC | 36 ms
52,608 KB |
testcase_24 | WA | - |
testcase_25 | AC | 37 ms
52,480 KB |
testcase_26 | AC | 36 ms
52,480 KB |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
ソースコード
from math import gcd def isprime(n): if n <= 1: return False elif n == 2: return True elif n % 2 == 0: return False A = [2, 325, 9375, 28178, 450775, 9780504, 1795265022] s = 0 d = n - 1 while d % 2 == 0: s += 1 d >>= 1 for a in A: if a % n == 0: return True x = pow(a, d, n) if x != 1: for t in range(s): if x == n - 1: break x = x * x % n else: return False return True def pollard(n): if n % 2 == 0: return 2 if isprime(n): return n f = lambda x:(x * x + 1) % n step = 0 while 1: step += 1 x = step y = f(x) while 1: p = gcd(y - x + n, n) if p == 0 or p == n: break if p != 1: return p x = f(x) y = f(f(y)) def primefact(n): if n == 1: return [] p = pollard(n) if p == n: return [p] left = primefact(p) right = primefact(n // p) left += right return sorted(left) def divisor_lst(n): if n == 1: return [1] primes = primefact(n) primes.append(primes[-1] + 1) bef = primes[0] cnt = 0 ret = [1] for p in primes: if p == bef: cnt += 1 else: times = bef le = len(ret) for _ in range(cnt): for i in range(le): ret.append(ret[i] * times) times *= bef bef = p cnt = 1 ret.sort() return ret p, q = map(int, input().split()) g = gcd(p, q) p //= g q //= g if p >= q: if (p, q) == (1, 1): print(1) print(2, 2) elif p - q == 1: print(2) print(1, q) print(q, 1) else: print(0) exit() divs = set(divisor_lst(q)) ans = [] for n in divs: m = p - n if m <= 0 or gcd(n, m) != 1: continue nm = n * m if q % nm == 0: t = q // nm nume = n + m deno = n * m * t g = gcd(nume, deno) nume //= g deno //= g if(nume, deno) == (p, q): ans.append((n * t, m * t)) ans.sort() print(len(ans)) for row in ans: print(*row)