結果
問題 | No.2171 OR Assignment |
ユーザー | 👑 tute7627 |
提出日時 | 2022-11-21 23:00:07 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
TLE
|
実行時間 | - |
コード長 | 6,814 bytes |
コンパイル時間 | 284 ms |
コンパイル使用メモリ | 13,440 KB |
実行使用メモリ | 76,340 KB |
最終ジャッジ日時 | 2024-11-18 05:58:38 |
合計ジャッジ時間 | 90,698 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 46 ms
52,368 KB |
testcase_01 | AC | 44 ms
17,152 KB |
testcase_02 | AC | 43 ms
17,280 KB |
testcase_03 | AC | 45 ms
52,248 KB |
testcase_04 | AC | 44 ms
17,280 KB |
testcase_05 | AC | 44 ms
49,636 KB |
testcase_06 | AC | 44 ms
17,152 KB |
testcase_07 | AC | 45 ms
43,712 KB |
testcase_08 | AC | 44 ms
17,152 KB |
testcase_09 | AC | 44 ms
43,464 KB |
testcase_10 | AC | 44 ms
17,408 KB |
testcase_11 | AC | 44 ms
43,080 KB |
testcase_12 | TLE | - |
testcase_13 | TLE | - |
testcase_14 | TLE | - |
testcase_15 | AC | 3,186 ms
63,172 KB |
testcase_16 | TLE | - |
testcase_17 | TLE | - |
testcase_18 | TLE | - |
testcase_19 | TLE | - |
testcase_20 | TLE | - |
testcase_21 | TLE | - |
testcase_22 | TLE | - |
testcase_23 | TLE | - |
testcase_24 | TLE | - |
testcase_25 | TLE | - |
testcase_26 | TLE | - |
testcase_27 | TLE | - |
testcase_28 | TLE | - |
testcase_29 | TLE | - |
testcase_30 | TLE | - |
testcase_31 | TLE | - |
ソースコード
import typing def _is_prime(n: int) -> bool: ''' Reference: M. Forisek and J. Jancina, Fast Primality Testing for Integers That Fit into a Machine Word ''' if n <= 1: return False if n == 2 or n == 7 or n == 61: return True if n % 2 == 0: return False d = n - 1 while d % 2 == 0: d //= 2 for a in (2, 7, 61): t = d y = pow(a, t, n) while t != n - 1 and y != 1 and y != n - 1: y = y * y % n t <<= 1 if y != n - 1 and t % 2 == 0: return False return True def _inv_gcd(a: int, b: int) -> typing.Tuple[int, int]: a %= b if a == 0: return (b, 0) # Contracts: # [1] s - m0 * a = 0 (mod b) # [2] t - m1 * a = 0 (mod b) # [3] s * |m1| + t * |m0| <= b s = b t = a m0 = 0 m1 = 1 while t: u = s // t s -= t * u m0 -= m1 * u # |m1 * u| <= |m1| * s <= b # [3]: # (s - t * u) * |m1| + t * |m0 - m1 * u| # <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) # = s * |m1| + t * |m0| <= b s, t = t, s m0, m1 = m1, m0 # by [3]: |m0| <= b/g # by g != b: |m0| < b/g if m0 < 0: m0 += b // s return (s, m0) def _primitive_root(m: int) -> int: if m == 2: return 1 if m == 167772161: return 3 if m == 469762049: return 3 if m == 754974721: return 11 if m == 998244353: return 3 divs = [2] + [0] * 19 cnt = 1 x = (m - 1) // 2 while x % 2 == 0: x //= 2 i = 3 while i * i <= x: if x % i == 0: divs[cnt] = i cnt += 1 while x % i == 0: x //= i i += 2 if x > 1: divs[cnt] = x cnt += 1 g = 2 while True: for i in range(cnt): if pow(g, (m - 1) // divs[i], m) == 1: break else: return g g += 1 class ModContext: context: typing.List[int] = [] def __init__(self, mod: int) -> None: assert 1 <= mod self.mod = mod def __enter__(self) -> None: self.context.append(self.mod) def __exit__(self, exc_type: typing.Any, exc_value: typing.Any, traceback: typing.Any) -> None: self.context.pop() @classmethod def get_mod(cls) -> int: return cls.context[-1] class Modint: def __init__(self, v: int = 0) -> None: self._mod = ModContext.get_mod() if v == 0: self._v = 0 else: self._v = v % self._mod def mod(self) -> int: return self._mod def val(self) -> int: return self._v def __iadd__(self, rhs: typing.Union['Modint', int]) -> 'Modint': if isinstance(rhs, Modint): self._v += rhs._v else: self._v += rhs if self._v >= self._mod: self._v -= self._mod return self def __isub__(self, rhs: typing.Union['Modint', int]) -> 'Modint': if isinstance(rhs, Modint): self._v -= rhs._v else: self._v -= rhs if self._v < 0: self._v += self._mod return self def __imul__(self, rhs: typing.Union['Modint', int]) -> 'Modint': if isinstance(rhs, Modint): self._v = self._v * rhs._v % self._mod else: self._v = self._v * rhs % self._mod return self def __ifloordiv__(self, rhs: typing.Union['Modint', int]) -> 'Modint': if isinstance(rhs, Modint): inv = rhs.inv()._v else: inv = atcoder._math._inv_gcd(rhs, self._mod)[1] self._v = self._v * inv % self._mod return self def __pos__(self) -> 'Modint': return self def __neg__(self) -> 'Modint': return Modint() - self def __pow__(self, n: int) -> 'Modint': assert 0 <= n return Modint(pow(self._v, n, self._mod)) def inv(self) -> 'Modint': eg = atcoder._math._inv_gcd(self._v, self._mod) assert eg[0] == 1 return Modint(eg[1]) def __add__(self, rhs: typing.Union['Modint', int]) -> 'Modint': if isinstance(rhs, Modint): result = self._v + rhs._v if result >= self._mod: result -= self._mod return raw(result) else: return Modint(self._v + rhs) def __sub__(self, rhs: typing.Union['Modint', int]) -> 'Modint': if isinstance(rhs, Modint): result = self._v - rhs._v if result < 0: result += self._mod return raw(result) else: return Modint(self._v - rhs) def __mul__(self, rhs: typing.Union['Modint', int]) -> 'Modint': if isinstance(rhs, Modint): return Modint(self._v * rhs._v) else: return Modint(self._v * rhs) def __floordiv__(self, rhs: typing.Union['Modint', int]) -> 'Modint': if isinstance(rhs, Modint): inv = rhs.inv()._v else: inv = atcoder._math._inv_gcd(rhs, self._mod)[1] return Modint(self._v * inv) def __eq__(self, rhs: typing.Union['Modint', int]) -> bool: # type: ignore if isinstance(rhs, Modint): return self._v == rhs._v else: return self._v == rhs def __ne__(self, rhs: typing.Union['Modint', int]) -> bool: # type: ignore if isinstance(rhs, Modint): return self._v != rhs._v else: return self._v != rhs def raw(v: int) -> Modint: x = Modint() x._v = v return x class FenwickTree: '''Reference: https://en.wikipedia.org/wiki/Fenwick_tree''' def __init__(self, n: int = 0) -> None: self._n = n self.data = [Modint(0) for _ in range(n)] def add(self, p: int, x: typing.Any) -> None: assert 0 <= p < self._n p += 1 while p <= self._n: self.data[p - 1] += x p += p & -p def sum(self, left: int, right: int) -> typing.Any: assert 0 <= left <= right <= self._n return self._sum(right) - self._sum(left) def _sum(self, r: int) -> typing.Any: s = Modint(0) while r > 0: s += self.data[r - 1] r -= r & -r return s with ModContext(998244353): N = int(input()) A = list(map(int,input().split())) dp = FenwickTree(N) dp.add(0, Modint(1)) prev = [-1] * 30 for i in range(N): for j in range(30): if (A[i] >> j) & 1: prev[j] = i idx = sorted(list(set(prev)), reverse=True) for j in idx: if j != i: dp.add(j + 1, dp.sum(0, j + 1)) print(dp.sum(0, N).val())