結果
| 問題 | 
                            No.2171 OR Assignment
                             | 
                    
| コンテスト | |
| ユーザー | 
                             tute7627
                         | 
                    
| 提出日時 | 2022-11-21 23:05:20 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                WA
                                 
                             
                            
                         | 
                    
| 実行時間 | - | 
| コード長 | 6,830 bytes | 
| コンパイル時間 | 255 ms | 
| コンパイル使用メモリ | 82,488 KB | 
| 実行使用メモリ | 130,212 KB | 
| 最終ジャッジ日時 | 2024-11-18 06:01:07 | 
| 合計ジャッジ時間 | 49,851 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge3 / judge4 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 1 WA * 1 | 
| other | AC * 6 WA * 24 | 
ソースコード
import typing
def _is_prime(n: int) -> bool:
    '''
    Reference:
    M. Forisek and J. Jancina,
    Fast Primality Testing for Integers That Fit into a Machine Word
    '''
    if n <= 1:
        return False
    if n == 2 or n == 7 or n == 61:
        return True
    if n % 2 == 0:
        return False
    d = n - 1
    while d % 2 == 0:
        d //= 2
    for a in (2, 7, 61):
        t = d
        y = pow(a, t, n)
        while t != n - 1 and y != 1 and y != n - 1:
            y = y * y % n
            t <<= 1
        if y != n - 1 and t % 2 == 0:
            return False
    return True
def _inv_gcd(a: int, b: int) -> typing.Tuple[int, int]:
    a %= b
    if a == 0:
        return (b, 0)
    # Contracts:
    # [1] s - m0 * a = 0 (mod b)
    # [2] t - m1 * a = 0 (mod b)
    # [3] s * |m1| + t * |m0| <= b
    s = b
    t = a
    m0 = 0
    m1 = 1
    while t:
        u = s // t
        s -= t * u
        m0 -= m1 * u  # |m1 * u| <= |m1| * s <= b
        # [3]:
        # (s - t * u) * |m1| + t * |m0 - m1 * u|
        # <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        # = s * |m1| + t * |m0| <= b
        s, t = t, s
        m0, m1 = m1, m0
    # by [3]: |m0| <= b/g
    # by g != b: |m0| < b/g
    if m0 < 0:
        m0 += b // s
    return (s, m0)
def _primitive_root(m: int) -> int:
    if m == 2:
        return 1
    if m == 167772161:
        return 3
    if m == 469762049:
        return 3
    if m == 754974721:
        return 11
    if m == 998244353:
        return 3
    divs = [2] + [0] * 19
    cnt = 1
    x = (m - 1) // 2
    while x % 2 == 0:
        x //= 2
    i = 3
    while i * i <= x:
        if x % i == 0:
            divs[cnt] = i
            cnt += 1
            while x % i == 0:
                x //= i
        i += 2
    if x > 1:
        divs[cnt] = x
        cnt += 1
    g = 2
    while True:
        for i in range(cnt):
            if pow(g, (m - 1) // divs[i], m) == 1:
                break
        else:
            return g
        g += 1
class ModContext:
    context: typing.List[int] = []
    def __init__(self, mod: int) -> None:
        assert 1 <= mod
        self.mod = mod
    def __enter__(self) -> None:
        self.context.append(self.mod)
    def __exit__(self, exc_type: typing.Any, exc_value: typing.Any,
                 traceback: typing.Any) -> None:
        self.context.pop()
    @classmethod
    def get_mod(cls) -> int:
        return cls.context[-1]
class Modint:
    def __init__(self, v: int = 0) -> None:
        self._mod = ModContext.get_mod()
        if v == 0:
            self._v = 0
        else:
            self._v = v % self._mod
    def mod(self) -> int:
        return self._mod
    def val(self) -> int:
        return self._v
    def __iadd__(self, rhs: typing.Union['Modint', int]) -> 'Modint':
        if isinstance(rhs, Modint):
            self._v += rhs._v
        else:
            self._v += rhs
        if self._v >= self._mod:
            self._v -= self._mod
        return self
    def __isub__(self, rhs: typing.Union['Modint', int]) -> 'Modint':
        if isinstance(rhs, Modint):
            self._v -= rhs._v
        else:
            self._v -= rhs
        if self._v < 0:
            self._v += self._mod
        return self
    def __imul__(self, rhs: typing.Union['Modint', int]) -> 'Modint':
        if isinstance(rhs, Modint):
            self._v = self._v * rhs._v % self._mod
        else:
            self._v = self._v * rhs % self._mod
        return self
    def __ifloordiv__(self, rhs: typing.Union['Modint', int]) -> 'Modint':
        if isinstance(rhs, Modint):
            inv = rhs.inv()._v
        else:
            inv = atcoder._math._inv_gcd(rhs, self._mod)[1]
        self._v = self._v * inv % self._mod
        return self
    def __pos__(self) -> 'Modint':
        return self
    def __neg__(self) -> 'Modint':
        return Modint() - self
    def __pow__(self, n: int) -> 'Modint':
        assert 0 <= n
        return Modint(pow(self._v, n, self._mod))
    def inv(self) -> 'Modint':
        eg = atcoder._math._inv_gcd(self._v, self._mod)
        assert eg[0] == 1
        return Modint(eg[1])
    def __add__(self, rhs: typing.Union['Modint', int]) -> 'Modint':
        if isinstance(rhs, Modint):
            result = self._v + rhs._v
            if result >= self._mod:
                result -= self._mod
            return raw(result)
        else:
            return Modint(self._v + rhs)
    def __sub__(self, rhs: typing.Union['Modint', int]) -> 'Modint':
        if isinstance(rhs, Modint):
            result = self._v - rhs._v
            if result < 0:
                result += self._mod
            return raw(result)
        else:
            return Modint(self._v - rhs)
    def __mul__(self, rhs: typing.Union['Modint', int]) -> 'Modint':
        if isinstance(rhs, Modint):
            return Modint(self._v * rhs._v)
        else:
            return Modint(self._v * rhs)
    def __floordiv__(self, rhs: typing.Union['Modint', int]) -> 'Modint':
        if isinstance(rhs, Modint):
            inv = rhs.inv()._v
        else:
            inv = atcoder._math._inv_gcd(rhs, self._mod)[1]
        return Modint(self._v * inv)
    def __eq__(self, rhs: typing.Union['Modint', int]) -> bool:  # type: ignore
        if isinstance(rhs, Modint):
            return self._v == rhs._v
        else:
            return self._v == rhs
    def __ne__(self, rhs: typing.Union['Modint', int]) -> bool:  # type: ignore
        if isinstance(rhs, Modint):
            return self._v != rhs._v
        else:
            return self._v != rhs
def raw(v: int) -> Modint:
    x = Modint()
    x._v = v
    return x
class FenwickTree:
    '''Reference: https://en.wikipedia.org/wiki/Fenwick_tree'''
    def __init__(self, n: int = 0) -> None:
        self._n = n
        self.data = [Modint(0) for _ in range(n)]
    def add(self, p: int, x: typing.Any) -> None:
        assert 0 <= p < self._n
        p += 1
        while p <= self._n:
            self.data[p - 1] += x
            p += p & -p
    def sum(self, left: int, right: int) -> typing.Any:
        assert 0 <= left <= right <= self._n
        return self._sum(right) - self._sum(left)
    def _sum(self, r: int) -> typing.Any:
        s = Modint(0)
        while r > 0:
            s += self.data[r - 1]
            r -= r & -r
        return s
with ModContext(998244353):
  N = int(input())
  A = list(map(int,input().split()))
  dp = FenwickTree(N)
  dp.add(0, Modint(1))
  
  prev = [-1] * 30
  for i in range(N):
    for j in range(30):
      if (A[i] >> j) & 1:
        prev[j] = i 
    #idx = sorted(list(set(prev)), reverse=True)
    idx = prev
    for j in idx:
      if j != i:
        dp.add(j + 1, dp.sum(0, j + 1))
  print(dp.sum(0, N).val())
            
            
            
        
            
tute7627