結果
| 問題 |
No.2130 分配方法の数え上げ mod 998244353
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-11-25 21:49:09 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 17 ms / 2,000 ms |
| コード長 | 7,686 bytes |
| コンパイル時間 | 1,395 ms |
| コンパイル使用メモリ | 129,824 KB |
| 最終ジャッジ日時 | 2025-02-09 00:08:54 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 38 |
ソースコード
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cmath>
#include <deque>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <stdio.h>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace std;
namespace
{
long long modinv(const long long& a, const long long& m)
{
long long s = a;
long long t = m;
long long xs = 1;
long long xt = 0;
while (s) {
long long q = t / s;
t -= q * s;
std::swap(s, t);
xt -= q * s;
std::swap(xs, xt);
}
assert(t == 1);
while (xt < 0) {
xt += m;
}
while (xt >= m) {
xt -= m;
}
return xt;
}
} // namespace
class mint
{
private:
long long val;
long long raw;
public:
static long long mod;
static long long mod_inv;
mint(long long v = 0) : val(v), raw(v)
{
assert(mod > 1 && mod < (1ll << 31));
if (val < 0) {
val = (-val) % mod;
val = mod - val;
if (val == mod) {
val = 0;
}
} else if (val >= mod) {
val %= mod;
}
}
explicit mint(long long v, long long r) : val(v), raw(r) {}
mint operator=(const mint& m)
{
val = m.val;
raw = m.raw;
return *this;
}
long long gval() const
{
return this->val;
}
long long graw() const
{
return this->raw;
}
mint operator+(const mint& m) const
{
return mint{(val + m.val >= mod ? (val + m.val - mod) : (val + m.val)),
raw + m.raw};
}
mint operator-(const mint& m) const
{
return mint{(val - m.val < 0 ? (val - m.val + mod) : (val - m.val)),
raw - m.raw};
}
mint operator*(const mint& m) const
{
// とりあえず愚直計算。
// 暇な時に高速なのにしておく
return mint{(val * m.val) % mod, raw * m.raw};
}
mint inv() const
{
long long v2 = modinv(val, mod);
return v2;
}
mint operator/(const mint& m) const
{
return (*this) * m.inv();
}
void operator+=(const mint& m)
{
*this = (*this) + m;
}
void operator-=(const mint& m)
{
*this = (*this) - m;
}
void operator*=(const mint& m)
{
*this = (*this) * m;
}
void operator/=(const mint& m)
{
*this = (*this) / m;
}
};
void init(long long m)
{
mint::mod = m;
// mint::mod_inv = (-1ull) / m + 1;
}
std::ostream& operator<<(std::ostream& stream, const mint& m)
{
const std::string sv = std::to_string(m.gval());
stream << sv;
return stream;
}
class big_mint
{
};
using ll = long long;
using Vi = vector<int>;
using VVi = vector<Vi>;
using Vl = vector<ll>;
using VVl = vector<Vl>;
using Pii = pair<int, int>;
using Vp = vector<Pii>;
using VVp = vector<Vp>;
using Pl = pair<ll, int>;
using Vpl = vector<Pl>;
using VVpl = vector<Vpl>;
using tup = tuple<ll, ll, int>;
using Vt = vector<tuple<int, int, int>>;
using Pll = pair<ll, ll>;
using Vc = vector<char>;
using VVc = vector<Vc>;
template <class U>
using PQmax = priority_queue<U>;
template <class U>
using PQmin = priority_queue<U, vector<U>, greater<U>>;
//再帰で計算するトポロジカルソート
void tprsort(int u, const VVi& gr, Vi& tpr, Vi& par);
//キューで計算するトポロジカルソート
void tprsort(const VVi& gr, Vi& tpr);
ll mpow(ll x, ll n, ll m = 1e9 + 7);
ll comb(int n, int r, const Vl& kai, const Vl& fkai, ll m = 1e9 + 7);
ll gcd(ll a, ll b);
int LCA(const VVi& par, const Vi& depth, int a, int b);
Vi sccResolve(const VVi& gr);
void dijkstra(const VVi& gr, const VVl& cost, Vl& dist, int s);
ll mint::mod = 998244353;
struct S {
mint val;
ll siz;
};
S comp(S a, S b)
{
return S{a.val + b.val, a.siz + b.siz};
}
using F = mint;
S mapp(S a, F b)
{
return S{a.val + b * a.siz, a.siz};
}
F fnc(F a, F b)
{
return F{a + b};
}
S e{0, 1};
F id{0};
int main()
{
ll N, M;
cin >> N >> M;
ll ans = 0;
ll kj = 1;
if (N < M) {
cout << 0 << endl;
return 0;
}
ll m = 998244353;
ll n = N % m;
for (int i = 0; i < M; i++) {
ans += kj;
ans %= m;
kj *= (n - i);
kj %= m;
kj *= mpow(i + 1, m - 2, m);
kj %= m;
}
ll sm = mpow(2, N, mint::mod);
ans = sm - ans + m;
ans %= m;
cout << ans << endl;
}
// Library
void tprsort(int u, const VVi& gr, Vi& tpr, Vi& par)
{
// idx[u] = tpr.size();
/*for (int v : gr[u]) {
if (par[v] == u || par[v] == -1) {
par[v] = u;
tprsort(v, gr, tpr, par);
}
}
tpr.push_back(u);*/
stack<int> st;
st.push(u);
bool vis[2000020];
for (int i = 0; i <= gr.size(); i++) {
vis[i] = false;
}
while (!st.empty()) {
int v = st.top();
if (!vis[v]) {
vis[v] = true;
for (int p : gr[v]) {
if (par[p] == -1) {
par[p] = v;
st.push(p);
}
}
} else {
tpr.push_back(v);
st.pop();
}
}
}
Vi sccResolve(const VVi& gr)
{
int N = gr.size();
Vi tpr;
Vi par(N, -1);
for (int i = 0; i < N; i++) {
if (par[i] == -1) {
tprsort(i, gr, tpr, par);
}
}
Vi ret(N, -1);
int now = 0;
for (int i = N - 1; i >= 0; i--) {
int u = tpr[i];
if (ret[u] != -1) {
continue;
}
ret[u] = now;
stack<int> st;
st.push(u);
while (!st.empty()) {
int v = st.top();
st.pop();
for (int p : gr[v]) {
if (ret[p] == -1) {
st.push(p);
ret[p] = now;
}
}
}
now++;
}
return ret;
}
ll gcd(ll a, ll b)
{
while (b) {
a %= b;
swap(a, b);
}
return a;
}
ll mpow(ll x, ll n, ll m)
{
ll ret = 1;
while (n) {
if (n % 2) {
ret *= x;
ret %= m;
}
x = (x * x) % m;
n /= 2;
}
return ret;
}
ll comb(int n, int r, const Vl& kai, const Vl& fkai, ll m)
{
if (n < 0 || r < 0 || n < r) {
return 0;
}
ll ret = kai[n];
ret *= fkai[r];
ret %= m;
ret *= fkai[n - r];
ret %= m;
return ret;
}
int LCA(const VVi& par, const Vi& depth, int a, int b)
{
if (depth[a] < depth[b]) {
swap(a, b);
}
int dis = depth[a] - depth[b];
for (int i = 19; i >= 0; i--) {
if ((dis >> i) & 1) {
a = par[i][a];
}
}
if (a == b) {
return a;
}
for (int i = 19; i >= 0; i--) {
if (par[i][a] != par[i][b]) {
a = par[i][a];
b = par[i][b];
}
}
return par[0][a];
}
void dijkstra(const VVi& gr, const VVl& cost, Vl& dist, int s)
{
ll INF = (ll)1e18;
dist.assign(gr.size(), INF);
dist[s] = 0;
PQmin<Pl> pque;
pque.push(make_pair(0, s));
while (!pque.empty()) {
auto [L, u] = pque.top();
pque.pop();
while (L != dist[u] && !pque.empty()) {
tie(L, u) = pque.top();
pque.pop();
}
for (int i = 0; i < gr[u].size(); i++) {
int v = gr[u][i];
ll c = cost[u][i];
if (dist[v] > c + L) {
dist[v] = c + L;
pque.push(make_pair(dist[v], v));
}
}
}
return;
}