結果

問題 No.2135 C5
ユーザー NyaanNyaanNyaanNyaan
提出日時 2022-11-25 23:07:11
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 38,906 bytes
コンパイル時間 3,117 ms
コンパイル使用メモリ 271,280 KB
実行使用メモリ 59,392 KB
最終ジャッジ日時 2024-10-02 05:38:09
合計ジャッジ時間 6,109 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 117 ms
59,392 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 RE -
testcase_08 AC 2 ms
5,248 KB
testcase_09 RE -
testcase_10 AC 2 ms
5,248 KB
testcase_11 AC 1 ms
5,248 KB
testcase_12 AC 2 ms
5,248 KB
testcase_13 AC 2 ms
5,248 KB
testcase_14 AC 2 ms
5,248 KB
testcase_15 AC 47 ms
29,568 KB
testcase_16 AC 104 ms
55,936 KB
testcase_17 AC 117 ms
58,496 KB
testcase_18 AC 90 ms
49,920 KB
testcase_19 AC 4 ms
5,248 KB
testcase_20 AC 38 ms
25,600 KB
testcase_21 AC 5 ms
5,632 KB
testcase_22 AC 12 ms
10,752 KB
testcase_23 AC 115 ms
57,472 KB
testcase_24 AC 53 ms
32,512 KB
testcase_25 AC 2 ms
5,248 KB
testcase_26 AC 2 ms
5,248 KB
testcase_27 AC 2 ms
5,248 KB
testcase_28 AC 2 ms
5,248 KB
testcase_29 AC 121 ms
59,392 KB
testcase_30 AC 114 ms
59,264 KB
testcase_31 AC 117 ms
59,392 KB
testcase_32 AC 114 ms
59,264 KB
testcase_33 AC 3 ms
5,248 KB
testcase_34 AC 2 ms
5,248 KB
testcase_35 AC 2 ms
5,248 KB
testcase_36 AC 2 ms
5,248 KB
testcase_37 AC 2 ms
5,248 KB
testcase_38 AC 2 ms
5,248 KB
testcase_39 AC 13 ms
11,648 KB
testcase_40 AC 6 ms
6,912 KB
testcase_41 AC 106 ms
58,624 KB
testcase_42 AC 2 ms
5,248 KB
testcase_43 AC 2 ms
5,248 KB
testcase_44 AC 2 ms
5,248 KB
testcase_45 AC 67 ms
37,760 KB
testcase_46 AC 3 ms
5,248 KB
testcase_47 AC 30 ms
20,480 KB
testcase_48 AC 2 ms
5,248 KB
testcase_49 AC 121 ms
59,264 KB
testcase_50 AC 2 ms
5,248 KB
testcase_51 AC 109 ms
59,392 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/**
 *  date : 2022-11-25 23:07:05
 */

#define NDEBUG
using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N,F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(vector<T> &v) {
  return next_permutation(begin(v), end(v));
}

template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

}  // namespace Nyaan

// bit operation
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan

// inout
namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

void outr() {}
template <typename T, class... U, char sep = ' '>
void outr(const T &t, const U &...u) {
  cout << t;
  outr(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan

// debug

#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif

// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)

namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }

//





namespace atcoder {

namespace internal {

template <class T> struct simple_queue {
    std::vector<T> payload;
    int pos = 0;
    void reserve(int n) { payload.reserve(n); }
    int size() const { return int(payload.size()) - pos; }
    bool empty() const { return pos == int(payload.size()); }
    void push(const T& t) { payload.push_back(t); }
    T& front() { return payload[pos]; }
    void clear() {
        payload.clear();
        pos = 0;
    }
    void pop() { pos++; }
};

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

template <class Cap> struct mf_graph {
  public:
    mf_graph() : _n(0) {}
    mf_graph(int n) : _n(n), g(n) {}

    virtual int add_edge(int from, int to, Cap cap) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        int from_id = int(g[from].size());
        int to_id = int(g[to].size());
        if (from == to) to_id++;
        g[from].push_back(_edge{to, to_id, cap});
        g[to].push_back(_edge{from, from_id, 0});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
    };

    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result;
        for (int i = 0; i < m; i++) {
            result.push_back(get_edge(i));
        }
        return result;
    }
    void change_edge(int i, Cap new_cap, Cap new_flow) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        assert(0 <= new_flow && new_flow <= new_cap);
        auto& _e = g[pos[i].first][pos[i].second];
        auto& _re = g[_e.to][_e.rev];
        _e.cap = new_cap - new_flow;
        _re.cap = new_flow;
    }

    Cap flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    Cap flow(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);

        std::vector<int> level(_n), iter(_n);
        internal::simple_queue<int> que;

        auto bfs = [&]() {
            std::fill(level.begin(), level.end(), -1);
            level[s] = 0;
            que.clear();
            que.push(s);
            while (!que.empty()) {
                int v = que.front();
                que.pop();
                for (auto e : g[v]) {
                    if (e.cap == 0 || level[e.to] >= 0) continue;
                    level[e.to] = level[v] + 1;
                    if (e.to == t) return;
                    que.push(e.to);
                }
            }
        };
        auto dfs = [&](auto self, int v, Cap up) {
            if (v == s) return up;
            Cap res = 0;
            int level_v = level[v];
            for (int& i = iter[v]; i < int(g[v].size()); i++) {
                _edge& e = g[v][i];
                if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
                Cap d =
                    self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
                if (d <= 0) continue;
                g[v][i].cap += d;
                g[e.to][e.rev].cap -= d;
                res += d;
                if (res == up) return res;
            }
            level[v] = _n;
            return res;
        };

        Cap flow = 0;
        while (flow < flow_limit) {
            bfs();
            if (level[t] == -1) break;
            std::fill(iter.begin(), iter.end(), 0);
            Cap f = dfs(dfs, t, flow_limit - flow);
            if (!f) break;
            flow += f;
        }
        return flow;
    }

    std::vector<bool> min_cut(int s) {
        std::vector<bool> visited(_n);
        internal::simple_queue<int> que;
        que.push(s);
        while (!que.empty()) {
            int p = que.front();
            que.pop();
            visited[p] = true;
            for (auto e : g[p]) {
                if (e.cap && !visited[e.to]) {
                    visited[e.to] = true;
                    que.push(e.to);
                }
            }
        }
        return visited;
    }

  private:
    int _n;
    struct _edge {
        int to, rev;
        Cap cap;
    };
    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};

}  // namespace atcoder


namespace BipartiteGraphImpl {
using namespace atcoder;
struct BipartiteGraph : mf_graph<long long> {
  int L, R, s, t;
  bool is_flow;

  explicit BipartiteGraph(int N, int M)
      : mf_graph<long long>(N + M + 2),
        L(N),
        R(M),
        s(N + M),
        t(N + M + 1),
        is_flow(false) {
    for (int i = 0; i < L; i++) mf_graph<long long>::add_edge(s, i, 1);
    for (int i = 0; i < R; i++) mf_graph<long long>::add_edge(i + L, t, 1);
  }

  int add_edge(int n, int m, long long cap = 1) override {
    assert(0 <= n && n < L);
    assert(0 <= m && m < R);
    return mf_graph<long long>::add_edge(n, m + L, cap);
  }

  long long flow() {
    is_flow = true;
    return mf_graph<long long>::flow(s, t);
  }

  vector<pair<int, int>> MaximumMatching() {
    if (!is_flow) flow();
    auto es = mf_graph<long long>::edges();
    vector<pair<int, int>> ret;
    for (auto &e : es) {
      if (e.flow > 0 && e.from != s && e.to != t) {
        ret.emplace_back(e.from, e.to - L);
      }
    }
    return ret;
  }

  // call after calclating flow !
  pair<vector<int>, vector<int>> MinimumVertexCover() {
    if (!is_flow) flow();
    auto colored = PreCalc();
    vector<int> nl, nr;
    for (int i = 0; i < L; i++)
      if (!colored[i]) nl.push_back(i);
    for (int i = 0; i < R; i++)
      if (colored[i + L]) nr.push_back(i);
    return make_pair(nl, nr);
  }

  // call after calclating flow !
  pair<vector<int>, vector<int>> MaximumIndependentSet() {
    if (!is_flow) flow();
    auto colored = PreCalc();
    vector<int> nl, nr;
    for (int i = 0; i < L; i++)
      if (colored[i]) nl.push_back(i);
    for (int i = 0; i < R; i++)
      if (!colored[i + L]) nr.push_back(i);
    return make_pair(nl, nr);
  }

  vector<pair<int, int>> MinimumEdgeCover() {
    if (!is_flow) flow();
    auto es = MaximumMatching();
    vector<bool> useL(L), useR(R);
    for (auto &p : es) {
      useL[p.first] = true;
      useR[p.second] = true;
    }
    for (auto &e : mf_graph<long long>::edges()) {
      if (e.flow > 0 || e.from == s || e.to == t) continue;
      if (useL[e.from] == false || useR[e.to - L] == false) {
        es.emplace_back(e.from, e.to - L);
        useL[e.from] = useR[e.to - L] = true;
      }
    }
    return es;
  }

 private:
  vector<bool> PreCalc() {
    vector<vector<int>> ag(L + R);
    vector<bool> used(L, false);
    for (auto &e : mf_graph<long long>::edges()) {
      if (e.from == s || e.to == t) continue;
      if (e.flow > 0) {
        ag[e.to].push_back(e.from);
        used[e.from] = true;
      } else {
        ag[e.from].push_back(e.to);
      }
    }
    vector<bool> colored(L + R, false);
    auto dfs = [&](auto rc, int cur) -> void {
      for (auto &d : ag[cur]) {
        if (!colored[d]) colored[d] = true, rc(rc, d);
      }
    };
    for (int i = 0; i < L; i++)
      if (!used[i]) colored[i] = true, dfs(dfs, i);
    return colored;
  }
};

}  // namespace BipartiteGraphImpl

using BipartiteGraphImpl::BipartiteGraph;

/**
 * @brief 二部グラフのフロー
 * @docs docs/flow/flow-on-bipartite-graph.md
 */



template <typename T>
struct Binomial {
  vector<T> f, g, h;
  Binomial(int MAX = 0) {
    assert(T::get_mod() != 0 && "Binomial<mint>()");
    f.resize(1, T{1});
    g.resize(1, T{1});
    h.resize(1, T{1});
    while (MAX >= (int)f.size()) extend();
  }

  void extend() {
    int n = f.size();
    int m = n * 2;
    f.resize(m);
    g.resize(m);
    h.resize(m);
    for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);
    g[m - 1] = f[m - 1].inverse();
    h[m - 1] = g[m - 1] * f[m - 2];
    for (int i = m - 2; i >= n; i--) {
      g[i] = g[i + 1] * T(i + 1);
      h[i] = g[i] * f[i - 1];
    }
  }

  T fac(int i) {
    if (i < 0) return T(0);
    while (i >= (int)f.size()) extend();
    return f[i];
  }

  T finv(int i) {
    if (i < 0) return T(0);
    while (i >= (int)g.size()) extend();
    return g[i];
  }

  T inv(int i) {
    if (i < 0) return -inv(-i);
    while (i >= (int)h.size()) extend();
    return h[i];
  }

  T C(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r) * finv(r);
  }

  inline T operator()(int n, int r) { return C(n, r); }

  template <typename I>
  T multinomial(const vector<I>& r) {
    static_assert(is_integral<I>::value == true);
    int n = 0;
    for (auto& x : r) {
      if (x < 0) return T(0);
      n += x;
    }
    T res = fac(n);
    for (auto& x : r) res *= finv(x);
    return res;
  }

  template <typename I>
  T operator()(const vector<I>& r) {
    return multinomial(r);
  }

  T C_naive(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    T ret = T(1);
    r = min(r, n - r);
    for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
    return ret;
  }

  T P(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r);
  }

  // [x^r] 1 / (1-x)^n
  T H(int n, int r) {
    if (n < 0 || r < 0) return T(0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
};

// given  : y(x=0) , y(x=1) , ... , y(k)
// return : y(x)
template <typename mint>
mint lagrange_interpolation(const vector<mint>& y, long long x,
                            Binomial<mint>& C) {
  int N = (int)y.size() - 1;
  if (x <= N) return y[x];
  mint ret = 0;
  vector<mint> dp(N + 1, 1), pd(N + 1, 1);
  mint a = x, one = 1;
  for (int i = 0; i < N; i++) dp[i + 1] = dp[i] * a, a -= one;
  for (int i = N; i > 0; i--) pd[i - 1] = pd[i] * a, a += one;
  for (int i = 0; i <= N; i++) {
    mint tmp = y[i] * dp[i] * pd[i] * C.finv(i) * C.finv(N - i);
    ret += ((N - i) & 1) ? -tmp : tmp;
  }
  return ret;
}


template <typename mint>
struct NTT {
  static constexpr uint32_t get_pr() {
    uint32_t _mod = mint::get_mod();
    using u64 = uint64_t;
    u64 ds[32] = {};
    int idx = 0;
    u64 m = _mod - 1;
    for (u64 i = 2; i * i <= m; ++i) {
      if (m % i == 0) {
        ds[idx++] = i;
        while (m % i == 0) m /= i;
      }
    }
    if (m != 1) ds[idx++] = m;

    uint32_t _pr = 2;
    while (1) {
      int flg = 1;
      for (int i = 0; i < idx; ++i) {
        u64 a = _pr, b = (_mod - 1) / ds[i], r = 1;
        while (b) {
          if (b & 1) r = r * a % _mod;
          a = a * a % _mod;
          b >>= 1;
        }
        if (r == 1) {
          flg = 0;
          break;
        }
      }
      if (flg == 1) break;
      ++_pr;
    }
    return _pr;
  };

  static constexpr uint32_t mod = mint::get_mod();
  static constexpr uint32_t pr = get_pr();
  static constexpr int level = __builtin_ctzll(mod - 1);
  mint dw[level], dy[level];

  void setwy(int k) {
    mint w[level], y[level];
    w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
    y[k - 1] = w[k - 1].inverse();
    for (int i = k - 2; i > 0; --i)
      w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
    dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
    for (int i = 3; i < k; ++i) {
      dw[i] = dw[i - 1] * y[i - 2] * w[i];
      dy[i] = dy[i - 1] * w[i - 2] * y[i];
    }
  }

  NTT() { setwy(level); }

  void fft4(vector<mint> &a, int k) {
    if ((int)a.size() <= 1) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    if (k & 1) {
      int v = 1 << (k - 1);
      for (int j = 0; j < v; ++j) {
        mint ajv = a[j + v];
        a[j + v] = a[j] - ajv;
        a[j] += ajv;
      }
    }
    int u = 1 << (2 + (k & 1));
    int v = 1 << (k - 2 - (k & 1));
    mint one = mint(1);
    mint imag = dw[1];
    while (v) {
      // jh = 0
      {
        int j0 = 0;
        int j1 = v;
        int j2 = j1 + v;
        int j3 = j2 + v;
        for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
          mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
          mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;
          a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;
        }
      }
      // jh >= 1
      mint ww = one, xx = one * dw[2], wx = one;
      for (int jh = 4; jh < u;) {
        ww = xx * xx, wx = ww * xx;
        int j0 = jh * v;
        int je = j0 + v;
        int j2 = je + v;
        for (; j0 < je; ++j0, ++j2) {
          mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,
               t3 = a[j2 + v] * wx;
          mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;
          a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;
        }
        xx *= dw[__builtin_ctzll((jh += 4))];
      }
      u <<= 2;
      v >>= 2;
    }
  }

  void ifft4(vector<mint> &a, int k) {
    if ((int)a.size() <= 1) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    int u = 1 << (k - 2);
    int v = 1;
    mint one = mint(1);
    mint imag = dy[1];
    while (u) {
      // jh = 0
      {
        int j0 = 0;
        int j1 = v;
        int j2 = v + v;
        int j3 = j2 + v;
        for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
          mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
          mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;
          a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;
          a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;
        }
      }
      // jh >= 1
      mint ww = one, xx = one * dy[2], yy = one;
      u <<= 2;
      for (int jh = 4; jh < u;) {
        ww = xx * xx, yy = xx * imag;
        int j0 = jh * v;
        int je = j0 + v;
        int j2 = je + v;
        for (; j0 < je; ++j0, ++j2) {
          mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];
          mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
          a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;
          a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;
        }
        xx *= dy[__builtin_ctzll(jh += 4)];
      }
      u >>= 4;
      v <<= 2;
    }
    if (k & 1) {
      u = 1 << (k - 1);
      for (int j = 0; j < u; ++j) {
        mint ajv = a[j] - a[j + u];
        a[j] += a[j + u];
        a[j + u] = ajv;
      }
    }
  }

  void ntt(vector<mint> &a) {
    if ((int)a.size() <= 1) return;
    fft4(a, __builtin_ctz(a.size()));
  }

  void intt(vector<mint> &a) {
    if ((int)a.size() <= 1) return;
    ifft4(a, __builtin_ctz(a.size()));
    mint iv = mint(a.size()).inverse();
    for (auto &x : a) x *= iv;
  }

  vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
    int l = a.size() + b.size() - 1;
    if (min<int>(a.size(), b.size()) <= 40) {
      vector<mint> s(l);
      for (int i = 0; i < (int)a.size(); ++i)
        for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];
      return s;
    }
    int k = 2, M = 4;
    while (M < l) M <<= 1, ++k;
    setwy(k);
    vector<mint> s(M), t(M);
    for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i];
    for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i];
    fft4(s, k);
    fft4(t, k);
    for (int i = 0; i < M; ++i) s[i] *= t[i];
    ifft4(s, k);
    s.resize(l);
    mint invm = mint(M).inverse();
    for (int i = 0; i < l; ++i) s[i] *= invm;
    return s;
  }

  void ntt_doubling(vector<mint> &a) {
    int M = (int)a.size();
    auto b = a;
    intt(b);
    mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1));
    for (int i = 0; i < M; i++) b[i] *= r, r *= zeta;
    ntt(b);
    copy(begin(b), end(b), back_inserter(a));
  }
};

template <typename mint>
struct FormalPowerSeries : vector<mint> {
  using vector<mint>::vector;
  using FPS = FormalPowerSeries;

  FPS &operator+=(const FPS &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
    return *this;
  }

  FPS &operator+=(const mint &r) {
    if (this->empty()) this->resize(1);
    (*this)[0] += r;
    return *this;
  }

  FPS &operator-=(const FPS &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
    return *this;
  }

  FPS &operator-=(const mint &r) {
    if (this->empty()) this->resize(1);
    (*this)[0] -= r;
    return *this;
  }

  FPS &operator*=(const mint &v) {
    for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
    return *this;
  }

  FPS &operator/=(const FPS &r) {
    if (this->size() < r.size()) {
      this->clear();
      return *this;
    }
    int n = this->size() - r.size() + 1;
    if ((int)r.size() <= 64) {
      FPS f(*this), g(r);
      g.shrink();
      mint coeff = g.back().inverse();
      for (auto &x : g) x *= coeff;
      int deg = (int)f.size() - (int)g.size() + 1;
      int gs = g.size();
      FPS quo(deg);
      for (int i = deg - 1; i >= 0; i--) {
        quo[i] = f[i + gs - 1];
        for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
      }
      *this = quo * coeff;
      this->resize(n, mint(0));
      return *this;
    }
    return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
  }

  FPS &operator%=(const FPS &r) {
    *this -= *this / r * r;
    shrink();
    return *this;
  }

  FPS operator+(const FPS &r) const { return FPS(*this) += r; }
  FPS operator+(const mint &v) const { return FPS(*this) += v; }
  FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
  FPS operator-(const mint &v) const { return FPS(*this) -= v; }
  FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
  FPS operator*(const mint &v) const { return FPS(*this) *= v; }
  FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
  FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
  FPS operator-() const {
    FPS ret(this->size());
    for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
    return ret;
  }

  void shrink() {
    while (this->size() && this->back() == mint(0)) this->pop_back();
  }

  FPS rev() const {
    FPS ret(*this);
    reverse(begin(ret), end(ret));
    return ret;
  }

  FPS dot(FPS r) const {
    FPS ret(min(this->size(), r.size()));
    for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
    return ret;
  }

  FPS pre(int sz) const {
    return FPS(begin(*this), begin(*this) + min((int)this->size(), sz));
  }

  FPS operator>>(int sz) const {
    if ((int)this->size() <= sz) return {};
    FPS ret(*this);
    ret.erase(ret.begin(), ret.begin() + sz);
    return ret;
  }

  FPS operator<<(int sz) const {
    FPS ret(*this);
    ret.insert(ret.begin(), sz, mint(0));
    return ret;
  }

  FPS diff() const {
    const int n = (int)this->size();
    FPS ret(max(0, n - 1));
    mint one(1), coeff(1);
    for (int i = 1; i < n; i++) {
      ret[i - 1] = (*this)[i] * coeff;
      coeff += one;
    }
    return ret;
  }

  FPS integral() const {
    const int n = (int)this->size();
    FPS ret(n + 1);
    ret[0] = mint(0);
    if (n > 0) ret[1] = mint(1);
    auto mod = mint::get_mod();
    for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
    for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
    return ret;
  }

  mint eval(mint x) const {
    mint r = 0, w = 1;
    for (auto &v : *this) r += w * v, w *= x;
    return r;
  }

  FPS log(int deg = -1) const {
    assert((*this)[0] == mint(1));
    if (deg == -1) deg = (int)this->size();
    return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
  }

  FPS pow(int64_t k, int deg = -1) const {
    const int n = (int)this->size();
    if (deg == -1) deg = n;
    if (k == 0) {
      FPS ret(deg);
      if (deg) ret[0] = 1;
      return ret;
    }
    for (int i = 0; i < n; i++) {
      if ((*this)[i] != mint(0)) {
        mint rev = mint(1) / (*this)[i];
        FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
        ret *= (*this)[i].pow(k);
        ret = (ret << (i * k)).pre(deg);
        if ((int)ret.size() < deg) ret.resize(deg, mint(0));
        return ret;
      }
      if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
    }
    return FPS(deg, mint(0));
  }

  static void *ntt_ptr;
  static void set_fft();
  FPS &operator*=(const FPS &r);
  void ntt();
  void intt();
  void ntt_doubling();
  static int ntt_pr();
  FPS inv(int deg = -1) const;
  FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;

/**
 * @brief 多項式/形式的冪級数ライブラリ
 * @docs docs/fps/formal-power-series.md
 */

template <typename mint>
void FormalPowerSeries<mint>::set_fft() {
  if (!ntt_ptr) ntt_ptr = new NTT<mint>;
}

template <typename mint>
FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=(
    const FormalPowerSeries<mint>& r) {
  if (this->empty() || r.empty()) {
    this->clear();
    return *this;
  }
  set_fft();
  auto ret = static_cast<NTT<mint>*>(ntt_ptr)->multiply(*this, r);
  return *this = FormalPowerSeries<mint>(ret.begin(), ret.end());
}

template <typename mint>
void FormalPowerSeries<mint>::ntt() {
  set_fft();
  static_cast<NTT<mint>*>(ntt_ptr)->ntt(*this);
}

template <typename mint>
void FormalPowerSeries<mint>::intt() {
  set_fft();
  static_cast<NTT<mint>*>(ntt_ptr)->intt(*this);
}

template <typename mint>
void FormalPowerSeries<mint>::ntt_doubling() {
  set_fft();
  static_cast<NTT<mint>*>(ntt_ptr)->ntt_doubling(*this);
}

template <typename mint>
int FormalPowerSeries<mint>::ntt_pr() {
  set_fft();
  return static_cast<NTT<mint>*>(ntt_ptr)->pr;
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const {
  assert((*this)[0] != mint(0));
  if (deg == -1) deg = (int)this->size();
  FormalPowerSeries<mint> res(deg);
  res[0] = {mint(1) / (*this)[0]};
  for (int d = 1; d < deg; d <<= 1) {
    FormalPowerSeries<mint> f(2 * d), g(2 * d);
    for (int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j];
    for (int j = 0; j < d; j++) g[j] = res[j];
    f.ntt();
    g.ntt();
    for (int j = 0; j < 2 * d; j++) f[j] *= g[j];
    f.intt();
    for (int j = 0; j < d; j++) f[j] = 0;
    f.ntt();
    for (int j = 0; j < 2 * d; j++) f[j] *= g[j];
    f.intt();
    for (int j = d; j < min(2 * d, deg); j++) res[j] = -f[j];
  }
  return res.pre(deg);
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const {
  using fps = FormalPowerSeries<mint>;
  assert((*this).size() == 0 || (*this)[0] == mint(0));
  if (deg == -1) deg = this->size();

  fps inv;
  inv.reserve(deg + 1);
  inv.push_back(mint(0));
  inv.push_back(mint(1));

  auto inplace_integral = [&](fps& F) -> void {
    const int n = (int)F.size();
    auto mod = mint::get_mod();
    while ((int)inv.size() <= n) {
      int i = inv.size();
      inv.push_back((-inv[mod % i]) * (mod / i));
    }
    F.insert(begin(F), mint(0));
    for (int i = 1; i <= n; i++) F[i] *= inv[i];
  };

  auto inplace_diff = [](fps& F) -> void {
    if (F.empty()) return;
    F.erase(begin(F));
    mint coeff = 1, one = 1;
    for (int i = 0; i < (int)F.size(); i++) {
      F[i] *= coeff;
      coeff += one;
    }
  };

  fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1};
  for (int m = 2; m < deg; m *= 2) {
    auto y = b;
    y.resize(2 * m);
    y.ntt();
    z1 = z2;
    fps z(m);
    for (int i = 0; i < m; ++i) z[i] = y[i] * z1[i];
    z.intt();
    fill(begin(z), begin(z) + m / 2, mint(0));
    z.ntt();
    for (int i = 0; i < m; ++i) z[i] *= -z1[i];
    z.intt();
    c.insert(end(c), begin(z) + m / 2, end(z));
    z2 = c;
    z2.resize(2 * m);
    z2.ntt();
    fps x(begin(*this), begin(*this) + min<int>(this->size(), m));
    x.resize(m);
    inplace_diff(x);
    x.push_back(mint(0));
    x.ntt();
    for (int i = 0; i < m; ++i) x[i] *= y[i];
    x.intt();
    x -= b.diff();
    x.resize(2 * m);
    for (int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0);
    x.ntt();
    for (int i = 0; i < 2 * m; ++i) x[i] *= z2[i];
    x.intt();
    x.pop_back();
    inplace_integral(x);
    for (int i = m; i < min<int>(this->size(), 2 * m); ++i) x[i] += (*this)[i];
    fill(begin(x), begin(x) + m, mint(0));
    x.ntt();
    for (int i = 0; i < 2 * m; ++i) x[i] *= y[i];
    x.intt();
    b.insert(end(b), begin(x) + m, end(x));
  }
  return fps{begin(b), begin(b) + deg};
}

/**
 * @brief NTT mod用FPSライブラリ
 * @docs docs/fps/ntt-friendly-fps.md
 */




template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(r * mod == 1, "invalid, r * mod != 1");
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  
  constexpr mint inverse() const { return pow(mod - 2); }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }
  
  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};

// #include "fps/arbitrary-fps.hpp"
//
using namespace Nyaan;
using mint = LazyMontgomeryModInt<998244353>;
// using mint = LazyMontgomeryModInt<1000000007>;
using vm = vector<mint>;
using vvm = vector<vm>;
Binomial<mint> C;
using fps = FormalPowerSeries<mint>;
using namespace Nyaan;

// (頂点数) / (次数 0 の個数) / (次数 1 の個数)
mint dp[310][310][310];

/*
mint naive(int N, int M) {
  if (N * (N - 1) / 2 < M) return 0;
  vp v;
  rep(i, N) rep(j, i) v.emplace_back(i, j);
  vi flag(sz(v));
  rep(i, M) flag[i] = 1;
  sort(all(flag));
  mint ans = 0;
  do {
    vi cnt(N);
    rep(i, sz(v)) {
      if (flag[i]) {
        cnt[v[i].fi]++;
        cnt[v[i].se]++;
      }
    }
    ans += Max(cnt) <= 2;
  } while (nxp(flag));
  return ans;
}
*/

void q() {
  ini(N, M);
  M = N * (N - 1) / 2 - M;
  if (N < M) die(0);

  if(M == 3) exit(1);

  dp[0][0][0] = 1;
  rep(i, N) rep(j, i + 1) rep(k, i + 1) {
    if (dp[i][j][k] == 0) continue;
    trc(i, j, k, dp[i][j][k]);
    // なし
    dp[i + 1][j + 1][k + 0] += dp[i][j][k];
    // 次数 0 と結ぶ
    if (j >= 1) dp[i + 1][j - 1][k + 2] += dp[i][j][k] * j;
    // 次数 0 x 2 と結ぶ
    if (j >= 2) dp[i + 1][j - 2][k + 2] += dp[i][j][k] * j * (j - 1) * C.inv(2);
    // 0, 1 と結ぶ
    if (j >= 1 and k >= 1) dp[i + 1][j - 1][k + 0] += dp[i][j][k] * j * k;
    // 1
    if (k >= 1) dp[i + 1][j + 0][k + 0] += dp[i][j][k] * k;
    // 1, 1
    if (k >= 2) dp[i + 1][j + 0][k - 2] += dp[i][j][k] * k * (k - 1) * C.inv(2);
  }
  // trc(N, M, naive(N, M));
  mint ans = 0;
  vm val(N + 1);
  rep(x, N + 1) {
    // x 頂点 x 辺除く
    mint cur = 0;
    int m = M - x;
    if (m < 0) continue;
    reg(j, x, N + 1) rep(k, N + 1) {
      int deg = (2 * N - 2 * j - k);
      if (m * 2 == deg) cur += dp[N][j][k] * C(j, x);
    }
    val[x] = cur;
  }

  for (int c3 = 0; c3 * 3 <= N; c3++) {
    for (int c4 = 0; c4 * 4 <= N; c4++) {
      int x = c3 * 3 + c4 * 4;
      if (x > N or x > M) break;
      vi v3(c3, 3), v4(c4, 4);
      mint coeff = C(x, c3 * 3) * C(v3) * C.finv(c3) * C(v4) * C.finv(c4) * (mint{3}.pow(c4));
      mint sgn = (c3 + c4) % 2 ? -1 : 1;
      if (M == 3 and c3 == 1) sgn = 0;
      trc(c3, c4, val[x], sgn, coeff);
      ans += val[x] * sgn * coeff;
    }
  }
  out(ans);
}

void Nyaan::solve() {
  int T = 1;
  // in(T);
  while (T--) q();
}
0