結果
問題 | No.3030 ミラー・ラビン素数判定法のテスト |
ユーザー | bayashi-cl |
提出日時 | 2022-11-26 10:58:10 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 1,488 bytes |
コンパイル時間 | 825 ms |
コンパイル使用メモリ | 72,860 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-10-02 14:40:01 |
合計ジャッジ時間 | 1,647 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 1 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,824 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | AC | 56 ms
6,820 KB |
testcase_08 | WA | - |
testcase_09 | WA | - |
ソースコード
#include <array> #include <cstdint> #include <iostream> #include <limits> using i32 = std::int32_t; using i64 = std::int64_t; using i128 = __int128_t; constexpr i64 mod_pow(i64 p, i64 q, i64 mod) { if (mod == 1) return 0; i64 res = 1; i64 b = p % mod; while (q) { if (q & 1) res = ((i128)res * b) % mod; b = ((i128)b * b) % mod; q >>= 1; } return res; } namespace impl { template <std::size_t N> constexpr bool miller_rabin(i64 n, std::array<i64, N> bases) { auto d = n - 1; while (d % 2 == 0) d >>= 1; for (auto b : bases) { if (n <= b) break; auto t = d; auto y = mod_pow(b, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } } // namespace impl constexpr bool is_prime(i64 n) { if (not(n & 1)) return n == 2; if (n <= 1) return false; if (n <= std::numeric_limits<int>::max()) { std::array<i64, 3> bases = {2, 7, 61}; return impl::miller_rabin(n, bases); } else { std::array<i64, 7> bases = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; return impl::miller_rabin(n, bases); } } int main() { i32 n; std::cin >> n; for (i32 i = 0; i < n; ++i) { i64 x; std::cin >> x; std::cout << x << (is_prime(x) ? " 1" : " 0") << std::endl; } }