結果
問題 | No.2133 Take it easy! |
ユーザー | 👑 p-adic |
提出日時 | 2022-11-26 17:28:55 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 56 ms / 2,000 ms |
コード長 | 3,153 bytes |
コンパイル時間 | 3,603 ms |
コンパイル使用メモリ | 221,688 KB |
実行使用メモリ | 12,128 KB |
最終ジャッジ日時 | 2024-10-03 01:29:07 |
合計ジャッジ時間 | 5,104 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 10 ms
11,904 KB |
testcase_01 | AC | 11 ms
11,904 KB |
testcase_02 | AC | 10 ms
11,948 KB |
testcase_03 | AC | 11 ms
12,004 KB |
testcase_04 | AC | 12 ms
11,852 KB |
testcase_05 | AC | 14 ms
12,068 KB |
testcase_06 | AC | 16 ms
11,840 KB |
testcase_07 | AC | 28 ms
11,880 KB |
testcase_08 | AC | 30 ms
12,008 KB |
testcase_09 | AC | 33 ms
11,864 KB |
testcase_10 | AC | 32 ms
11,880 KB |
testcase_11 | AC | 24 ms
11,856 KB |
testcase_12 | AC | 28 ms
11,876 KB |
testcase_13 | AC | 49 ms
11,988 KB |
testcase_14 | AC | 52 ms
11,848 KB |
testcase_15 | AC | 43 ms
11,880 KB |
testcase_16 | AC | 37 ms
11,836 KB |
testcase_17 | AC | 38 ms
11,876 KB |
testcase_18 | AC | 55 ms
12,008 KB |
testcase_19 | AC | 48 ms
11,932 KB |
testcase_20 | AC | 21 ms
11,836 KB |
testcase_21 | AC | 54 ms
11,992 KB |
testcase_22 | AC | 38 ms
11,880 KB |
testcase_23 | AC | 56 ms
12,128 KB |
testcase_24 | AC | 56 ms
11,868 KB |
testcase_25 | AC | 30 ms
11,880 KB |
testcase_26 | AC | 10 ms
11,944 KB |
testcase_27 | AC | 10 ms
11,876 KB |
testcase_28 | AC | 10 ms
11,924 KB |
ソースコード
#pragma GCC optimize ( "O3" ) #pragma GCC target ( "avx" ) #include<bits/stdc++.h> using namespace std; using ll = long long; #define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE #define CIN( LL , A ) LL A; cin >> A #define ASSERT( A , MIN , MAX ) assert( MIN <= A && A <= MAX ) #define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- ) #define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) #define QUIT return 0 #define RETURN( ANSWER ) cout << ( ANSWER ) << "\n"; QUIT int main() { UNTIE; CEXPR( ll , P , 998244353 ); CEXPR( int , bound_N , 200000 ); CIN_ASSERT( N , 1 , bound_N ); CEXPR( int , bound_Q , 60 ); CIN_ASSERT( Q , 0 , bound_Q ); ll factorial[bound_N + 1]; ll inverse[bound_N + 1]; ll inverse_factorial[bound_N + 1]; ll factorial_current = factorial[0] = factorial[1] = 1; ll inverse_factorial_current = inverse_factorial[0] = inverse_factorial[1] = inverse[1] = 1; FOREQ( i , 2 , bound_N ){ factorial[i] = ( factorial_current *= i ) %= P; inverse_factorial[i] = ( inverse_factorial_current *= ( inverse[i] = P - ( ( inverse[P % i] * ( P / i ) ) % P ) ) ) %= P; } int N_half = N / 2; ll answer; if( N % 2 == 0 ){ ( answer = factorial[N_half] * factorial[N_half] ) %= P; } else { ( answer = factorial[N_half + 1] * factorial[N_half] ) %= P; N++; } bitset<bound_N + 1> base[bound_Q * 2 + 2] = {}; bitset<bound_N + 1> current; ( ( ( current = 0 ).flip() <<= bound_N - N ) >>= bound_N - ( N - 1 ) ) <<= 1; base[0] = current; int num = 1; int num_copy; bitset<bound_N + 1> div; REPEAT( Q ){ CIN_ASSERT( Li , 1 , N ); CIN_ASSERT( Ri , Li , N ); ( ( ( current = 0 ).flip() <<= bound_N - Ri ) >>= bound_N - ( Ri - Li ) ) <<= Li; num_copy = num; FOR( i , 0 , num_copy ){ bitset<bound_N + 1>& basei = base[i]; div = basei & current; if( div != 0 && div != basei ){ basei &= ~div; base[num] = div; num++; } } } CEXPR( int , length , bound_N / 2 ); ll Cataran[length + 1]; Cataran[0] = 1; FOREQ( i , 1 , length ){ Cataran[i] = ( ( ( factorial[i+i] * inverse_factorial[i+1] ) % P ) * inverse_factorial[i] ) % P; } int count; FOR( i , 0 , num ){ count = 0; bitset<bound_N + 1>& basei = base[i]; FOREQ( j , 1 , N ){ if( basei[j] == 1 ){ count++; } } if( count % 2 == 0 ){ ( answer *= Cataran[count / 2] ) %= P; } else { answer = 0; break; } } RETURN( answer ); }