結果
| 問題 |
No.2133 Take it easy!
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2022-11-26 17:28:55 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 60 ms / 2,000 ms |
| コード長 | 3,153 bytes |
| コンパイル時間 | 3,280 ms |
| コンパイル使用メモリ | 221,636 KB |
| 最終ジャッジ日時 | 2025-02-09 01:22:04 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 26 |
ソースコード
#pragma GCC optimize ( "O3" )
#pragma GCC target ( "avx" )
#include<bits/stdc++.h>
using namespace std;
using ll = long long;
#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define ASSERT( A , MIN , MAX ) assert( MIN <= A && A <= MAX )
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define RETURN( ANSWER ) cout << ( ANSWER ) << "\n"; QUIT
int main()
{
UNTIE;
CEXPR( ll , P , 998244353 );
CEXPR( int , bound_N , 200000 );
CIN_ASSERT( N , 1 , bound_N );
CEXPR( int , bound_Q , 60 );
CIN_ASSERT( Q , 0 , bound_Q );
ll factorial[bound_N + 1];
ll inverse[bound_N + 1];
ll inverse_factorial[bound_N + 1];
ll factorial_current = factorial[0] = factorial[1] = 1;
ll inverse_factorial_current = inverse_factorial[0] = inverse_factorial[1] = inverse[1] = 1;
FOREQ( i , 2 , bound_N ){
factorial[i] = ( factorial_current *= i ) %= P;
inverse_factorial[i] = ( inverse_factorial_current *= ( inverse[i] = P - ( ( inverse[P % i] * ( P / i ) ) % P ) ) ) %= P;
}
int N_half = N / 2;
ll answer;
if( N % 2 == 0 ){
( answer = factorial[N_half] * factorial[N_half] ) %= P;
} else {
( answer = factorial[N_half + 1] * factorial[N_half] ) %= P;
N++;
}
bitset<bound_N + 1> base[bound_Q * 2 + 2] = {};
bitset<bound_N + 1> current;
( ( ( current = 0 ).flip() <<= bound_N - N ) >>= bound_N - ( N - 1 ) ) <<= 1;
base[0] = current;
int num = 1;
int num_copy;
bitset<bound_N + 1> div;
REPEAT( Q ){
CIN_ASSERT( Li , 1 , N );
CIN_ASSERT( Ri , Li , N );
( ( ( current = 0 ).flip() <<= bound_N - Ri ) >>= bound_N - ( Ri - Li ) ) <<= Li;
num_copy = num;
FOR( i , 0 , num_copy ){
bitset<bound_N + 1>& basei = base[i];
div = basei & current;
if( div != 0 && div != basei ){
basei &= ~div;
base[num] = div;
num++;
}
}
}
CEXPR( int , length , bound_N / 2 );
ll Cataran[length + 1];
Cataran[0] = 1;
FOREQ( i , 1 , length ){
Cataran[i] = ( ( ( factorial[i+i] * inverse_factorial[i+1] ) % P ) * inverse_factorial[i] ) % P;
}
int count;
FOR( i , 0 , num ){
count = 0;
bitset<bound_N + 1>& basei = base[i];
FOREQ( j , 1 , N ){
if( basei[j] == 1 ){
count++;
}
}
if( count % 2 == 0 ){
( answer *= Cataran[count / 2] ) %= P;
} else {
answer = 0;
break;
}
}
RETURN( answer );
}