結果

問題 No.1195 数え上げを愛したい(文字列編)
ユーザー cubinglovercubinglover
提出日時 2022-11-26 17:34:44
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 531 ms / 3,000 ms
コード長 20,363 bytes
コンパイル時間 3,301 ms
コンパイル使用メモリ 235,256 KB
実行使用メモリ 13,388 KB
最終ジャッジ日時 2024-10-03 01:34:06
合計ジャッジ時間 11,869 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 525 ms
13,268 KB
testcase_01 AC 531 ms
13,388 KB
testcase_02 AC 530 ms
13,268 KB
testcase_03 AC 64 ms
8,732 KB
testcase_04 AC 68 ms
8,548 KB
testcase_05 AC 41 ms
10,220 KB
testcase_06 AC 12 ms
7,040 KB
testcase_07 AC 12 ms
6,912 KB
testcase_08 AC 95 ms
7,700 KB
testcase_09 AC 500 ms
13,260 KB
testcase_10 AC 286 ms
10,128 KB
testcase_11 AC 452 ms
13,240 KB
testcase_12 AC 431 ms
13,336 KB
testcase_13 AC 362 ms
10,200 KB
testcase_14 AC 240 ms
10,472 KB
testcase_15 AC 271 ms
9,996 KB
testcase_16 AC 249 ms
10,104 KB
testcase_17 AC 97 ms
7,700 KB
testcase_18 AC 427 ms
13,216 KB
testcase_19 AC 431 ms
13,212 KB
testcase_20 AC 365 ms
10,200 KB
testcase_21 AC 459 ms
13,360 KB
testcase_22 AC 346 ms
10,052 KB
testcase_23 AC 12 ms
6,912 KB
testcase_24 AC 11 ms
6,912 KB
testcase_25 AC 11 ms
6,984 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define repl(i, l, r) for (int i = (l); i < (int)(r); ++i)
#define rep(i, n) repl(i, 0, n)
#define CST(x) cout << fixed << setprecision(x)
#define all(x) (x).begin(), (x).end()
#define sz(x) (int)(x).size()
using ll = long long;
constexpr ll MOD = 998244353;
constexpr int inf = 1e9 + 10;
constexpr ll INF = (ll)4e18 + 10;
constexpr int dx[9] = {1, 0, -1, 0, 1, -1, -1, 1, 0};
constexpr int dy[9] = {0, 1, 0, -1, 1, 1, -1, -1, 0};
const double PI = acos(-1);
template <typename T>
using MaxHeap = priority_queue<T>;
template <typename T>
using MinHeap = priority_queue<T, vector<T>, greater<T>>;
template <typename T>
inline bool chmax(T& a, T b) {
    return ((a < b) ? (a = b, true) : (false));
}
template <typename T>
inline bool chmin(T& a, T b) {
    return ((a > b) ? (a = b, true) : (false));
}
template <typename T>
inline void yn(const T& a) {
    ((a) ? (cout << "Yes" << endl) : (cout << "No" << endl));
}
template <typename T>
inline void YN(const T& a) {
    ((a) ? (cout << "YES" << endl) : (cout << "NO" << endl));
}
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value ||
                                                       std::is_same<T, __int128>::value,
                                                   std::true_type, std::false_type>::type;

template <class T>
using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                                         std::is_same<T, unsigned __int128>::value,
                                                     std::true_type, std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;

template <class T>
using is_integral =
    typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value ||
                                  is_unsigned_int128<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using is_signed_int =
    typename std::conditional<(internal::is_integral<T>::value && std::is_signed<T>::value) ||
                                  is_signed_int128<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value, make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T>
using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                                                std::true_type, std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T>
using to_unsigned_t = typename to_unsigned<T>::type;
}  // namespace internal
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}
struct barrett {
    unsigned int _m;
    unsigned long long im;

    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    unsigned int umod() const { return _m; }

    unsigned int mul(unsigned int a, unsigned int b) const {
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n>
constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T>
using is_modint = std::is_base_of<modint_base, T>;
template <class T>
using is_modint_t = std::enable_if_t<is_modint<T>::value>;
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : static_modint_base {
    using mint = static_modint;

   public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
    friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
    friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
    friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
    friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; }
    friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; }

   private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = is_prime<m>;
};
template <int id>
struct dynamic_modint : modint_base {
    using mint = dynamic_modint;

   public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
    friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
    friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
    friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
    friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; }
    friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; }

   private:
    unsigned int _v;
    static barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id>
barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
template <class T>
using is_static_modint = std::is_base_of<static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class>
struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
using mint = modint998244353;
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m>
constexpr int primitive_root = primitive_root_constexpr(m);
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}
template <class mint, is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
    static constexpr int g = primitive_root<mint::mod()>;
    int n = int(a.size());
    int h = ceil_pow2(n);

    static bool first = true;
    static mint sum_e[30];  // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
    if (first) {
        first = false;
        mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
        int cnt2 = bsf(mint::mod() - 1);
        mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
        for (int i = cnt2; i >= 2; i--) {
            // e^(2^i) == 1
            es[i - 2] = e;
            ies[i - 2] = ie;
            e *= e;
            ie *= ie;
        }
        mint now = 1;
        for (int i = 0; i <= cnt2 - 2; i++) {
            sum_e[i] = es[i] * now;
            now *= ies[i];
        }
    }
    for (int ph = 1; ph <= h; ph++) {
        int w = 1 << (ph - 1), p = 1 << (h - ph);
        mint now = 1;
        for (int s = 0; s < w; s++) {
            int offset = s << (h - ph + 1);
            for (int i = 0; i < p; i++) {
                auto l = a[i + offset];
                auto r = a[i + offset + p] * now;
                a[i + offset] = l + r;
                a[i + offset + p] = l - r;
            }
            now *= sum_e[bsf(~(unsigned int)(s))];
        }
    }
}
template <class mint, is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
    static constexpr int g = primitive_root<mint::mod()>;
    int n = int(a.size());
    int h = ceil_pow2(n);

    static bool first = true;
    static mint sum_ie[30];  // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
    if (first) {
        first = false;
        mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
        int cnt2 = bsf(mint::mod() - 1);
        mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
        for (int i = cnt2; i >= 2; i--) {
            // e^(2^i) == 1
            es[i - 2] = e;
            ies[i - 2] = ie;
            e *= e;
            ie *= ie;
        }
        mint now = 1;
        for (int i = 0; i <= cnt2 - 2; i++) {
            sum_ie[i] = ies[i] * now;
            now *= es[i];
        }
    }

    for (int ph = h; ph >= 1; ph--) {
        int w = 1 << (ph - 1), p = 1 << (h - ph);
        mint inow = 1;
        for (int s = 0; s < w; s++) {
            int offset = s << (h - ph + 1);
            for (int i = 0; i < p; i++) {
                auto l = a[i + offset];
                auto r = a[i + offset + p];
                a[i + offset] = l + r;
                a[i + offset + p] =
                    (unsigned long long)(mint::mod() + l.val() - r.val()) * inow.val();
            }
            inow *= sum_ie[bsf(~(unsigned int)(s))];
        }
    }
}
template <class mint, is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};
    if (std::min(n, m) <= 60) {
        if (n < m) {
            std::swap(n, m);
            std::swap(a, b);
        }
        std::vector<mint> ans(n + m - 1);
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                ans[i + j] += a[i] * b[j];
            }
        }
        return ans;
    }
    int z = 1 << ceil_pow2(n + m - 1);
    a.resize(z);
    butterfly(a);
    b.resize(z);
    butterfly(b);
    for (int i = 0; i < z; i++) {
        a[i] *= b[i];
    }
    butterfly_inv(a);
    a.resize(n + m - 1);
    mint iz = mint(z).inv();
    for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
    return a;
}

template <unsigned int mod = 998244353, class T, std::enable_if_t<is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    using mint = static_modint<mod>;
    std::vector<mint> a2(n), b2(m);
    for (int i = 0; i < n; i++) {
        a2[i] = mint(a[i]);
    }
    for (int i = 0; i < m; i++) {
        b2[i] = mint(b[i]);
    }
    auto c2 = convolution(move(a2), move(b2));
    std::vector<T> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        c[i] = c2[i].val();
    }
    return c;
}
std::vector<long long> convolution_ll(const std::vector<long long>& a,
                                      const std::vector<long long>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    static constexpr unsigned long long MOD1 = 754974721;  // 2^24
    static constexpr unsigned long long MOD2 = 167772161;  // 2^25
    static constexpr unsigned long long MOD3 = 469762049;  // 2^26
    static constexpr unsigned long long M2M3 = MOD2 * MOD3;
    static constexpr unsigned long long M1M3 = MOD1 * MOD3;
    static constexpr unsigned long long M1M2 = MOD1 * MOD2;
    static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;

    static constexpr unsigned long long i1 = inv_gcd(MOD2 * MOD3, MOD1).second;
    static constexpr unsigned long long i2 = inv_gcd(MOD1 * MOD3, MOD2).second;
    static constexpr unsigned long long i3 = inv_gcd(MOD1 * MOD2, MOD3).second;

    auto c1 = convolution<MOD1>(a, b);
    auto c2 = convolution<MOD2>(a, b);
    auto c3 = convolution<MOD3>(a, b);

    std::vector<long long> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        unsigned long long x = 0;
        x += (c1[i] * i1) % MOD1 * M2M3;
        x += (c2[i] * i2) % MOD2 * M1M3;
        x += (c3[i] * i3) % MOD3 * M1M2;
        long long diff = c1[i] - safe_mod((long long)(x), (long long)(MOD1));
        if (diff < 0) diff += MOD1;
        static constexpr unsigned long long offset[5] = {0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
        x -= offset[diff % 5];
        c[i] = x;
    }

    return c;
}
constexpr ll MAX = 300005;
mint fac[MAX], finv[MAX], inv[MAX];
void COMinit() {
    fac[0] = fac[1] = 1;
    finv[0] = finv[1] = 1;
    inv[1] = 1;
    repl(i, 2, MAX) {
        fac[i] = fac[i - 1] * i;
        inv[i] = MOD - inv[MOD % i] * (MOD / i);
        finv[i] = finv[i - 1] * inv[i];
    }
}
int main() {
    cin.tie(nullptr);
    cout.tie(nullptr);
    ios::sync_with_stdio(false);

    COMinit();

    string s;
    cin >> s;

    vector<int> cnt(26);
    for (const auto& c : s) ++cnt[c - 'a'];

    vector<mint> ans(1);
    ans[0] = 1;
    mint n = 0;
    rep(i, 26) {
        vector<mint> v(cnt[i] + 1, 1);
        rep(j, cnt[i] + 1) v[j] = finv[j];
        ans = convolution(ans, v);
        n += cnt[i];
    }

    mint t = -1;
    rep(i, sz(ans)) t += ans[i] * fac[i];

    cout << t.val() << endl;

    return 0;
}
0