結果
問題 | No.2147 ハノイの塔のおもちゃ |
ユーザー | 👑 p-adic |
提出日時 | 2022-11-28 21:39:33 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 3,061 bytes |
コンパイル時間 | 979 ms |
コンパイル使用メモリ | 76,092 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-11-15 02:48:41 |
合計ジャッジ時間 | 1,576 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 8 |
ソースコード
#pragma GCC optimize ( "O3" ) #pragma GCC target ( "avx" ) #include <iostream> #include <string> #include <stdio.h> #include <stdint.h> #include <cassert> using namespace std; using ll = long long; #define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE #define CIN( LL , A ) LL A; cin >> A #define ASSERT( A , MIN , MAX ) assert( MIN <= A && A <= MAX ) #define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define QUIT return 0 #define RETURN( ANSWER ) cout << ( ANSWER ) << "\n"; QUIT // 入力フォーマットチェック用 // 余分な改行を許さない #define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; cin >> VARIABLE_FOR_CHECK_REDUNDANT_INPUT; assert( VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin ); // #define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; getline( cin , VARIABLE_FOR_CHECK_REDUNDANT_INPUT ); assert( VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin ); // |N| <= BOUNDを満たすNをSから構築 #define STOI( S , N , BOUND ) TYPE_OF( BOUND ) N = 0; { bool VARIABLE_FOR_POSITIVITY_FOR_STOI = true; assert( S != "" ); if( S.substr( 0 , 1 ) == "-" ){ VARIABLE_FOR_POSITIVITY_FOR_STOI = false; S = S.substr( 1 ); assert( S != "" ); } assert( S.substr( 0 , 1 ) != " " ); while( S == "" ? false : S.substr( 0 , 1 ) != " " ){ assert( N < BOUND / 10 ? true : N == BOUND / 10 && stoi( S.substr( 0 , 1 ) ) <= BOUND % 10 ); N = N * 10 + stoi( S.substr( 0 , 1 ) ); S = S.substr( 1 ); } if( ! VARIABLE_FOR_POSITIVITY_FOR_STOI ){ N *= -1; } if( S != "" ){ S = S.substr( 1 ); } } // 1行で入力される変数の個数が適切か確認(半角空白の個数+1を調べる) #define COUNT_VARIABLE( S , VARIABLE_NUMBER ) { int size = S.size(); int count = 0; for( int i = 0 ; i < size ; i++ ){ if( S.substr( i , 1 ) == " " ){ count++; } } assert( count + 1 == VARIABLE_NUMBER ); } int main() { UNTIE; CEXPR( ll , bound_N , 1000 ); CIN_ASSERT( N , 1 , bound_N ); CIN( string , S ); // CHECK_REDUNDANT_INPUT; int i = S.size() - 1; string c[3] = { "A" , "B" , "C" }; while( i >= 0 ? S.substr( i , 1 ) == c[0] : false ){ i--; } if( i < 0 ){ RETURN( 0 ); } // n個の時にフラクタル端点への移動するターン数a(n) // a(0) = 0 // a(n+1) = 2a(n) + 1 // -> a(n) = 2^n - 1; ll a_plus[bound_N]; ll power = 1; CEXPR( ll , P , 1000000007 ); a_plus[0] = 1; FOREQ( j , 1 , i ){ a_plus[j] = ( power *= 2 ) %= P; } ll answer = 0; string s; int d = 0; while( i >= 0 ){ s = S.substr( i , 1 ); // フラクタル上の最短経路を通る if( s != c[d] ){ if( s == c[(++d)%=3] ){ (++d)%=3; } answer += a_plus[i]; } i--; } RETURN( answer % P ); }