結果
問題 | No.613 Solitude by the window |
ユーザー | ecottea |
提出日時 | 2022-11-30 19:57:11 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 17,878 bytes |
コンパイル時間 | 4,635 ms |
コンパイル使用メモリ | 251,880 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-10-07 15:05:21 |
合計ジャッジ時間 | 5,573 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 3 ms
6,816 KB |
testcase_03 | AC | 3 ms
6,820 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,820 KB |
testcase_08 | AC | 2 ms
6,820 KB |
testcase_09 | AC | 3 ms
6,820 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 3 ms
6,820 KB |
testcase_12 | AC | 3 ms
6,820 KB |
testcase_13 | AC | 3 ms
6,816 KB |
testcase_14 | AC | 3 ms
6,816 KB |
testcase_15 | AC | 3 ms
6,816 KB |
testcase_16 | AC | 3 ms
6,816 KB |
testcase_17 | AC | 2 ms
6,820 KB |
testcase_18 | AC | 2 ms
6,820 KB |
testcase_19 | AC | 2 ms
6,820 KB |
testcase_20 | AC | 2 ms
6,816 KB |
testcase_21 | AC | 1 ms
6,820 KB |
testcase_22 | AC | 2 ms
6,816 KB |
testcase_23 | AC | 2 ms
6,820 KB |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi DY = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004004004004004LL; double EPS = 1e-12; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 // 汎用関数の定義 template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } // 手元環境(Visual Studio) #ifdef _MSC_VER #include "local.hpp" // 提出用(gcc) #else inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define gcd __gcd #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_list2D(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) while (1) cout << "OLE"; } #endif #endif // 折りたたみ用 //--------------AtCoder 専用-------------- #include <atcoder/all> using namespace atcoder; //using mint = modint1000000007; //using mint = modint998244353; using mint = modint; // mint::set_mod(m); istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; //---------------------------------------- mint naive(ll n) { mint res = 2; rep(i, n) res *= res + 4; return res; } //【平方剰余】O((log p)^2) /* * x^2 = a mod p の解 x の 1 つを返す.(なければ -1) * * 制約 : p = mint::mod() は素数 * *(トネリ-シャンクスのアルゴリズム) */ int tonelli_shanks(const mint& a) { // 参考:https://tjkendev.github.io/procon-library/python/math/tonelli-shanks.html // verify : https://judge.yosupo.jp/problem/sqrt_mod //【方法】 // p = mod, p-1 = 2^d q(q : 奇数)と表しておく. // // a = 0 のときは 0^2 = 0 なので単に 0 を返せば良い. // // p = 2 のときは x^2 = x (mod 2) なので単に a を返せば良い. // // a が平方非剰余の場合を検出するには,オイラーの規準より // a が平方非剰余 ⇔ a^((p-1)/2) = -1 // であることを用いてればよい.この場合は -1 を返す. // // p = 3 (mod 4) の場合は,単に x = a^((p+1)/4) を返せば良い.実際,オイラーの規準より // x^2 = a^((p+1)/2) = a * a^((p-1)/2) = a * 1 = a // となる. // // 以降の手順のため,オイラーの規準を用いて適当な平方非剰余 z を見つけておく. // // t = a^q と初期化する.a は平方剰余なので,オイラーの規準より // t^(2^(d-1)) = a^(2^(d-1) q) = a^((p-1)/2) = 1 // となる. // // i∈[d-2..0] について,t^(2^i) = -1 であれば // t *= z^(2^(d-i-1) q) // と t を更新する.この因子の 2^i 乗は // (z^(2^(d-i-1) q))^(2^i) = z^(2^(d-1) q) = z^((p-1)/2) = -1 // より -1 なので,この更新により t^(2^i) = 1 となる. // i = 0 まで更新を終えれば最終的に t = 1 となり,ここまでの手順から // 1 = a^q z^(2^(d-i[1]-1) q) ... z^(2^(d-i[k]-1) q) // の形の等式が得られる. // // 先の等式を用いれば,求める x は // x = (1 a)^(1/2) // = (a^(q+1) z^(2^(d-i[1]-1) q) ... z^(2^(d-i[k]-1) q))^(1/2) // = a^((q+1)/2) z^(2^(d-i[1]-2) q) ... z^(2^(d-i[k]-2) q) // と表される. // 法 p を得る. int p = mint::mod(); // a = 0 の場合の例外処理 if (a == 0) return 0; // p = 2 の場合の例外処理 if (p == 2) return a.val(); // a が平方非剰余なら -1 を返す. if (a.pow((p - 1) / 2) == -1) return -1; // p = 3 (mod 4) の場合は簡単に解決する. if (p % 4 == 3) return a.pow((p + 1) / 4).val(); // mod - 1 = 2^d q(q : 奇数)なる d, q を得る. int q = p - 1, d = 0; while (q % 2 == 0) { q /= 2; d++; } mt19937_64 mt((int)time(NULL)); uniform_int_distribution<ll> rnd(2, p - 1); // 適当な平方非剰余 z を見つける. mint z; vm z_pow(d); // z_pow[i] = z^(2^i q) while (true) { z = rnd(mt); z_pow[0] = z.pow(q); repi(i, 1, d - 1) z_pow[i] = z_pow[i - 1] * z_pow[i - 1]; if (z_pow[d - 1] == -1) break; } // t を更新しつつ結果を得る. mint tmp = a.pow((q - 1) / 2), res = tmp * a, t = tmp * res; repir(i, d - 2, 0) { if (t.pow(1LL << i) == -1) { t *= z_pow[d - i - 1]; res *= z_pow[d - i - 2]; } } return res.val(); } //【素因数分解】O(√n) /* * n を素因数分解した結果を pps に格納する. * * pps[p] = d : n に素因数 p が d 個含まれていることを表す. */ void factor_integer(ll n, map<ll, int>& pps) { // verify : https://algo-method.com/tasks/457 pps.clear(); for (ll i = 2; i * i <= n; i++) { int d = 0; while (n % i == 0) { d++; n /= i; } if (d > 0) pps[i] = d; } if (n > 1) pps[n] = 1; } //【オイラー関数】O(√n) /* * オイラー関数の値 φ(n) を返す. * * 利用:【素因数分解】 */ ll euler_phi(ll n) { // verify : https://judge.yosupo.jp/problem/tetration_mod // n を素因数分解した結果を pps に受け取る. map<ll, int> pps; factor_integer(n, pps); // φ(n) を計算する. ll res = 1; repe(pp, pps) { res *= (pp.first - 1) * pow(pp.first, pp.second - 1); } return res; } //【累乗で累乗】O(√m) /* * a ^ (b ^ c) mod m を返す. * * 利用:【オイラー関数】 */ int power_power(ll a, ll b, ll c, int m) { // verify : https://atcoder.jp/contests/abc228/tasks/abc228_e using mint_pm = dynamic_modint<47157>; // 他と被らなければ何でも良い. // a^0 = 1 の例外処理 // 以降は b^c != 0 としてよい. if (b == 0 && c > 0) return 1; // m^(b^c) = 0 (mod m) の例外処理 // 以降は a は m の倍数ではないとしてよい. if (a % m == 0) return 0; // a^(φ(m) + 1) = a なる pm = φ(m) を得る. ll pm = euler_phi(m); // d = b^c mod pm を求める. mint_pm::set_mod((int)pm); int d = mint_pm(b).pow(c).val(); // a^(d+φ(m)) mod m を求める. mint_pm::set_mod(m); return mint_pm(a).pow(d + pm).val(); } mint solve_with_sqrt3(ll n, int sqrt3) { mint res = -2; res += power_power(2 + sqrt3, 2, n, mint::mod()); res += power_power(2 - sqrt3, 2, n, mint::mod()); return res; } //【有限体 F_p 上の計算(64 bit)】 /* * 有限体 F_p 上ので様々な計算を行う. * mll::set_mod(ll p) はあらゆる場所で使う法を書き換えてしまうので注意. * * 制約 : p は素数,コンパイラは gcc */ #ifdef _MSC_VER #define __int128 ll // デバッグ用 #endif struct mll { __int128 v; static __int128 MOD; // コンストラクタ mll() : v(0) {}; mll(const mll& a) = default; mll(const int& a) : v(safe_mod(a)) {}; mll(const ll& a) : v(safe_mod(a)) {}; // 代入 mll& operator=(const mll& a) { v = a.v; return *this; } mll& operator=(const int& a) { v = safe_mod(a); return *this; } mll& operator=(const ll& a) { v = safe_mod(a); return *this; } // 入出力 friend istream& operator>> (istream& is, mll& x) { ll tmp; is >> tmp; x.v = safe_mod(tmp); return is; } friend ostream& operator<< (ostream& os, const mll& x) { os << (ll)x.v; return os; } // 非負 mod template <class T> static __int128 safe_mod(T a) { return ((a % MOD) + MOD) % MOD; } // 比較 bool operator==(const mll& b) const { return v == b.v; } bool operator==(const int& b) const { return v == safe_mod(b); } bool operator==(const ll& b) const { return v == safe_mod(b); } friend bool operator==(const int& a, const mll& b) { return b == a; } friend bool operator==(const ll& a, const mll& b) { return b == a; } // 演算 mll& operator+=(const mll& b) { v = safe_mod(v + b.v); return *this; } mll& operator-=(const mll& b) { v = safe_mod(v - b.v); return *this; } mll& operator*=(const mll& b) { v = safe_mod(v * b.v); return *this; } mll& operator/=(const mll& b) { *this *= b.inv(); return *this; } mll operator+(const mll& b) const { mll a = *this; return a += b; } mll operator-(const mll& b) const { mll a = *this; return a -= b; } mll operator*(const mll& b) const { mll a = *this; return a *= b; } mll operator/(const mll& b) const { mll a = *this; return a /= b; } mll operator-() const { mll a = *this; return a *= -1; } // int との演算 mll& operator+=(const int& b) { v = safe_mod(v + b); return *this; } mll& operator-=(const int& b) { v = safe_mod(v - b); return *this; } mll& operator*=(const int& b) { v = safe_mod(v * b); return *this; } mll& operator/=(const int& b) { *this *= mll(b).inv(); return *this; } mll operator+(const int& b) const { mll a = *this; return a += b; } mll operator-(const int& b) const { mll a = *this; return a -= b; } mll operator*(const int& b) const { mll a = *this; return a *= b; } mll operator/(const int& b) const { mll a = *this; return a /= b; } friend mll operator+(const int& a, const mll& b) { return b + a; } friend mll operator-(const int& a, const mll& b) { return -(b - a); } friend mll operator*(const int& a, const mll& b) { return b * a; } friend mll operator/(const int& a, const mll& b) { return mll(a) * b.inv(); } // ll との演算 mll& operator+=(const ll& b) { v = safe_mod(v + b); return *this; } mll& operator-=(const ll& b) { v = safe_mod(v - b); return *this; } mll& operator*=(const ll& b) { v = safe_mod(v * b); return *this; } mll& operator/=(const ll& b) { *this *= mll(b).inv(); return *this; } mll operator+(const ll& b) const { mll a = *this; return a += b; } mll operator-(const ll& b) const { mll a = *this; return a -= b; } mll operator*(const ll& b) const { mll a = *this; return a *= b; } mll operator/(const ll& b) const { mll a = *this; return a /= b; } friend mll operator+(const ll& a, const mll& b) { return b + a; } friend mll operator-(const ll& a, const mll& b) { return -(b - a); } friend mll operator*(const ll& a, const mll& b) { return b * a; } friend mll operator/(const ll& a, const mll& b) { return mll(a) * b.inv(); } // 累乗 mll pow(ll d) const { mll res(1), pow2 = *this; while (d > 0) { if (d & 1) res *= pow2; pow2 *= pow2; d /= 2; } return res; } // 逆元 mll inv() const { return pow(MOD - 2); } // 法の設定,確認 static void set_mod(ll MOD_) { Assert(MOD_ > 0); MOD = MOD_; } static ll mod() { return (ll)MOD; } // 値の確認 ll val() const { return (ll)safe_mod(v); } }; __int128 mll::MOD; // 静的メンバ変数は実体を別に宣言する必要がある //【行列】 /* * 行列を表す構造体 * * Matrix(m, n) : O(m n) * m * n 零行列で初期化する. * * Matrix(n) : O(n^2) * n * n 単位行列で初期化する. * * Matrix(a) : O(m n) * 配列 a の要素で初期化する. * * A + B : O(m n) * m * n 行列 A, B の和を返す.+= も使用可. * * A - B : O(m n) * m * n 行列 A, B の差を返す.-= も使用可. * * c * A / A * c : O(m n) * m * n 行列 A とスカラー c のスカラー積を返す.*= も使用可. * * A * x : O(m n) * m * n 行列 A と n 次元列ベクトル x の積を返す. * * x * A : O(m n) * m 次元行ベクトル x と m * n 行列 A の積を返す. * * A * B : O(l m n) * l * m 行列 A と m * n 行列 B の積を返す. * * pow(d) : O(n^3 log d) * 自身を d 乗した行列を返す. */ template <class T> struct Matrix { int m, n; // 行列のサイズ(m 行 n 列) vector<vector<T>> v; // 行列の成分 // コンストラクタ(初期化なし,零行列,単位行列,二次元配列) Matrix() : m(0), n(0) {} Matrix(const int& m_, const int& n_) : m(m_), n(n_), v(m_, vector<T>(n_)) {} Matrix(const int& n_) : m(n_), n(n_), v(n_, vector<T>(n_)) { rep(i, n) v[i][i] = 1; } Matrix(const vector<vector<T>>& a) : m(sz(a)), n(sz(a[0])), v(a) {} // 代入 Matrix(const Matrix& b) = default; Matrix& operator=(const Matrix& b) = default; // 入力 friend istream& operator>>(istream& is, Matrix& a) { rep(i, a.m) rep(j, a.n) is >> a.v[i][j]; return is; } // アクセス vector<T> const& operator[](int i) const { return v[i]; } vector<T>& operator[](int i) { return v[i]; } // 比較 bool operator==(const Matrix& b) const { return m == b.m && n == b.n && v == b.v; } bool operator!=(const Matrix& b) const { return !(*this == b); } // 加算,減算,スカラー倍 Matrix& operator+=(const Matrix& b) { rep(i, m) rep(j, n) v[i][j] += b.v[i][j]; return *this; } Matrix& operator-=(const Matrix& b) { rep(i, m) rep(j, n) v[i][j] -= b.v[i][j]; return *this; } Matrix& operator*=(const T& c) { rep(i, m) rep(j, n) v[i][j] *= c; return *this; } Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; } Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; } Matrix operator*(const T& c) const { return Matrix(*this) *= c; } friend Matrix operator*(const T& c, const Matrix<T>& a) { return a * c; } Matrix operator-() const { return Matrix(*this) *= T(-1); } // 行列ベクトル積 : O(m n) vector<T> operator*(const vector<T>& x) const { vector<T> y(m); rep(i, m) rep(j, n) y[i] += v[i][j] * x[j]; return y; } // ベクトル行列積 : O(m n) friend vector<T> operator*(const vector<T>& x, const Matrix& a) { vector<T> y(a.n); rep(i, a.m) rep(j, a.n) y[j] += x[i] * a.v[i][j]; return y; } // 積:O(n^3) Matrix operator*(const Matrix& b) const { // verify : https://judge.yosupo.jp/problem/matrix_product Matrix res(m, b.n); rep(i, res.m) rep(j, res.n) rep(k, n) res.v[i][j] += v[i][k] * b.v[k][j]; return res; } Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; } // 累乗:O(n^3 log d) Matrix pow(ll d) const { Matrix res(n), pow2 = *this; while (d > 0) { if ((d & 1) != 0) res *= pow2; pow2 *= pow2; d /= 2; } return res; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Matrix& a) { rep(i, a.m) { os << "["; rep(j, a.n) os << a.v[i][j] << (j < a.n - 1 ? " " : "]"); if (i < a.m - 1) os << "\n"; } return os; } #endif }; int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); ll n; int m; cin >> n >> m; mint::set_mod(m); // dump(naive(n)); int sqrt3 = tonelli_shanks(3); if (sqrt3 != -1) EXIT(solve_with_sqrt3(n, sqrt3)); mll::set_mod((ll)m * m - 1); ll d = mll(2).pow(n).val(); Matrix<mint> res(vvm{ {-2, 0},{0, -2} }); res += Matrix<mint>(vvm{ {2, 3},{1, 2} }).pow(d); res += Matrix<mint>(vvm{ {2, -3},{-1, 2} }).pow(d); cout << res[0][0] << endl; }