結果

問題 No.613 Solitude by the window
ユーザー ecottea
提出日時 2022-11-30 19:57:11
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 3 ms / 2,000 ms
コード長 17,878 bytes
コンパイル時間 4,635 ms
コンパイル使用メモリ 251,880 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-07 15:05:21
合計ジャッジ時間 5,573 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 21
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; // -2^63 2^63 = 9 * 10^18int -2^31 2^31 = 2 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004004004004004LL;
double EPS = 1e-12;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
//
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
// Visual Studio
#ifdef _MSC_VER
#include "local.hpp"
// gcc
#else
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_list2D(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
#endif //
//--------------AtCoder --------------
#include <atcoder/all>
using namespace atcoder;
//using mint = modint1000000007;
//using mint = modint998244353;
using mint = modint; // mint::set_mod(m);
istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>;
//----------------------------------------
mint naive(ll n) {
mint res = 2;
rep(i, n) res *= res + 4;
return res;
}
//O((log p)^2)
/*
* x^2 = a mod p x 1 -1
*
* : p = mint::mod()
*
*
*/
int tonelli_shanks(const mint& a) {
// https://tjkendev.github.io/procon-library/python/math/tonelli-shanks.html
// verify : https://judge.yosupo.jp/problem/sqrt_mod
//
// p = mod, p-1 = 2^d qq :
//
// a = 0 0^2 = 0 0
//
// p = 2 x^2 = x (mod 2) a
//
// a
// a ⇔ a^((p-1)/2) = -1
// -1
//
// p = 3 (mod 4) x = a^((p+1)/4)
// x^2 = a^((p+1)/2) = a * a^((p-1)/2) = a * 1 = a
//
//
// z
//
// t = a^q a
// t^(2^(d-1)) = a^(2^(d-1) q) = a^((p-1)/2) = 1
//
//
// i∈[d-2..0] t^(2^i) = -1
// t *= z^(2^(d-i-1) q)
// t 2^i
// (z^(2^(d-i-1) q))^(2^i) = z^(2^(d-1) q) = z^((p-1)/2) = -1
// -1 t^(2^i) = 1
// i = 0 t = 1
// 1 = a^q z^(2^(d-i[1]-1) q) ... z^(2^(d-i[k]-1) q)
//
//
// x
// x = (1 a)^(1/2)
// = (a^(q+1) z^(2^(d-i[1]-1) q) ... z^(2^(d-i[k]-1) q))^(1/2)
// = a^((q+1)/2) z^(2^(d-i[1]-2) q) ... z^(2^(d-i[k]-2) q)
//
// p
int p = mint::mod();
// a = 0
if (a == 0) return 0;
// p = 2
if (p == 2) return a.val();
// a -1
if (a.pow((p - 1) / 2) == -1) return -1;
// p = 3 (mod 4)
if (p % 4 == 3) return a.pow((p + 1) / 4).val();
// mod - 1 = 2^d qq : d, q
int q = p - 1, d = 0;
while (q % 2 == 0) {
q /= 2;
d++;
}
mt19937_64 mt((int)time(NULL));
uniform_int_distribution<ll> rnd(2, p - 1);
// z
mint z; vm z_pow(d); // z_pow[i] = z^(2^i q)
while (true) {
z = rnd(mt);
z_pow[0] = z.pow(q);
repi(i, 1, d - 1) z_pow[i] = z_pow[i - 1] * z_pow[i - 1];
if (z_pow[d - 1] == -1) break;
}
// t
mint tmp = a.pow((q - 1) / 2), res = tmp * a, t = tmp * res;
repir(i, d - 2, 0) {
if (t.pow(1LL << i) == -1) {
t *= z_pow[d - i - 1];
res *= z_pow[d - i - 2];
}
}
return res.val();
}
//O(√n)
/*
* n pps
*
* pps[p] = d : n p d
*/
void factor_integer(ll n, map<ll, int>& pps) {
// verify : https://algo-method.com/tasks/457
pps.clear();
for (ll i = 2; i * i <= n; i++) {
int d = 0;
while (n % i == 0) {
d++;
n /= i;
}
if (d > 0) pps[i] = d;
}
if (n > 1) pps[n] = 1;
}
//O(√n)
/*
* φ(n)
*
*
*/
ll euler_phi(ll n) {
// verify : https://judge.yosupo.jp/problem/tetration_mod
// n pps
map<ll, int> pps;
factor_integer(n, pps);
// φ(n)
ll res = 1;
repe(pp, pps) {
res *= (pp.first - 1) * pow(pp.first, pp.second - 1);
}
return res;
}
//O(√m)
/*
* a ^ (b ^ c) mod m
*
*
*/
int power_power(ll a, ll b, ll c, int m) {
// verify : https://atcoder.jp/contests/abc228/tasks/abc228_e
using mint_pm = dynamic_modint<47157>; //
// a^0 = 1
// b^c != 0
if (b == 0 && c > 0) return 1;
// m^(b^c) = 0 (mod m)
// a m
if (a % m == 0) return 0;
// a^(φ(m) + 1) = a pm = φ(m)
ll pm = euler_phi(m);
// d = b^c mod pm
mint_pm::set_mod((int)pm);
int d = mint_pm(b).pow(c).val();
// a^(d+φ(m)) mod m
mint_pm::set_mod(m);
return mint_pm(a).pow(d + pm).val();
}
mint solve_with_sqrt3(ll n, int sqrt3) {
mint res = -2;
res += power_power(2 + sqrt3, 2, n, mint::mod());
res += power_power(2 - sqrt3, 2, n, mint::mod());
return res;
}
// F_p 64 bit
/*
* F_p
* mll::set_mod(ll p) 使
*
* : p gcc
*/
#ifdef _MSC_VER
#define __int128 ll //
#endif
struct mll {
__int128 v;
static __int128 MOD;
//
mll() : v(0) {};
mll(const mll& a) = default;
mll(const int& a) : v(safe_mod(a)) {};
mll(const ll& a) : v(safe_mod(a)) {};
//
mll& operator=(const mll& a) { v = a.v; return *this; }
mll& operator=(const int& a) { v = safe_mod(a); return *this; }
mll& operator=(const ll& a) { v = safe_mod(a); return *this; }
//
friend istream& operator>> (istream& is, mll& x) { ll tmp; is >> tmp; x.v = safe_mod(tmp); return is; }
friend ostream& operator<< (ostream& os, const mll& x) { os << (ll)x.v; return os; }
// mod
template <class T> static __int128 safe_mod(T a) { return ((a % MOD) + MOD) % MOD; }
//
bool operator==(const mll& b) const { return v == b.v; }
bool operator==(const int& b) const { return v == safe_mod(b); }
bool operator==(const ll& b) const { return v == safe_mod(b); }
friend bool operator==(const int& a, const mll& b) { return b == a; }
friend bool operator==(const ll& a, const mll& b) { return b == a; }
//
mll& operator+=(const mll& b) { v = safe_mod(v + b.v); return *this; }
mll& operator-=(const mll& b) { v = safe_mod(v - b.v); return *this; }
mll& operator*=(const mll& b) { v = safe_mod(v * b.v); return *this; }
mll& operator/=(const mll& b) { *this *= b.inv(); return *this; }
mll operator+(const mll& b) const { mll a = *this; return a += b; }
mll operator-(const mll& b) const { mll a = *this; return a -= b; }
mll operator*(const mll& b) const { mll a = *this; return a *= b; }
mll operator/(const mll& b) const { mll a = *this; return a /= b; }
mll operator-() const { mll a = *this; return a *= -1; }
// int
mll& operator+=(const int& b) { v = safe_mod(v + b); return *this; }
mll& operator-=(const int& b) { v = safe_mod(v - b); return *this; }
mll& operator*=(const int& b) { v = safe_mod(v * b); return *this; }
mll& operator/=(const int& b) { *this *= mll(b).inv(); return *this; }
mll operator+(const int& b) const { mll a = *this; return a += b; }
mll operator-(const int& b) const { mll a = *this; return a -= b; }
mll operator*(const int& b) const { mll a = *this; return a *= b; }
mll operator/(const int& b) const { mll a = *this; return a /= b; }
friend mll operator+(const int& a, const mll& b) { return b + a; }
friend mll operator-(const int& a, const mll& b) { return -(b - a); }
friend mll operator*(const int& a, const mll& b) { return b * a; }
friend mll operator/(const int& a, const mll& b) { return mll(a) * b.inv(); }
// ll
mll& operator+=(const ll& b) { v = safe_mod(v + b); return *this; }
mll& operator-=(const ll& b) { v = safe_mod(v - b); return *this; }
mll& operator*=(const ll& b) { v = safe_mod(v * b); return *this; }
mll& operator/=(const ll& b) { *this *= mll(b).inv(); return *this; }
mll operator+(const ll& b) const { mll a = *this; return a += b; }
mll operator-(const ll& b) const { mll a = *this; return a -= b; }
mll operator*(const ll& b) const { mll a = *this; return a *= b; }
mll operator/(const ll& b) const { mll a = *this; return a /= b; }
friend mll operator+(const ll& a, const mll& b) { return b + a; }
friend mll operator-(const ll& a, const mll& b) { return -(b - a); }
friend mll operator*(const ll& a, const mll& b) { return b * a; }
friend mll operator/(const ll& a, const mll& b) { return mll(a) * b.inv(); }
//
mll pow(ll d) const {
mll res(1), pow2 = *this;
while (d > 0) {
if (d & 1) res *= pow2;
pow2 *= pow2;
d /= 2;
}
return res;
}
//
mll inv() const { return pow(MOD - 2); }
//
static void set_mod(ll MOD_) { Assert(MOD_ > 0); MOD = MOD_; }
static ll mod() { return (ll)MOD; }
//
ll val() const { return (ll)safe_mod(v); }
};
__int128 mll::MOD; //
//
/*
*
*
* Matrix(m, n) : O(m n)
* m * n
*
* Matrix(n) : O(n^2)
* n * n
*
* Matrix(a) : O(m n)
* a
*
* A + B : O(m n)
* m * n A, B += 使
*
* A - B : O(m n)
* m * n A, B -= 使
*
* c * A A * c : O(m n)
* m * n A c *= 使
*
* A * x : O(m n)
* m * n A n x
*
* x * A : O(m n)
* m x m * n A
*
* A * B : O(l m n)
* l * m A m * n B
*
* pow(d) : O(n^3 log d)
* d
*/
template <class T> struct Matrix {
int m, n; // m n
vector<vector<T>> v; //
//
Matrix() : m(0), n(0) {}
Matrix(const int& m_, const int& n_) : m(m_), n(n_), v(m_, vector<T>(n_)) {}
Matrix(const int& n_) : m(n_), n(n_), v(n_, vector<T>(n_)) { rep(i, n) v[i][i] = 1; }
Matrix(const vector<vector<T>>& a) : m(sz(a)), n(sz(a[0])), v(a) {}
//
Matrix(const Matrix& b) = default;
Matrix& operator=(const Matrix& b) = default;
//
friend istream& operator>>(istream& is, Matrix& a) {
rep(i, a.m) rep(j, a.n) is >> a.v[i][j];
return is;
}
//
vector<T> const& operator[](int i) const { return v[i]; }
vector<T>& operator[](int i) { return v[i]; }
//
bool operator==(const Matrix& b) const { return m == b.m && n == b.n && v == b.v; }
bool operator!=(const Matrix& b) const { return !(*this == b); }
//
Matrix& operator+=(const Matrix& b) {
rep(i, m) rep(j, n) v[i][j] += b.v[i][j];
return *this;
}
Matrix& operator-=(const Matrix& b) {
rep(i, m) rep(j, n) v[i][j] -= b.v[i][j];
return *this;
}
Matrix& operator*=(const T& c) {
rep(i, m) rep(j, n) v[i][j] *= c;
return *this;
}
Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; }
Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; }
Matrix operator*(const T& c) const { return Matrix(*this) *= c; }
friend Matrix operator*(const T& c, const Matrix<T>& a) { return a * c; }
Matrix operator-() const { return Matrix(*this) *= T(-1); }
// : O(m n)
vector<T> operator*(const vector<T>& x) const {
vector<T> y(m);
rep(i, m) rep(j, n) y[i] += v[i][j] * x[j];
return y;
}
// : O(m n)
friend vector<T> operator*(const vector<T>& x, const Matrix& a) {
vector<T> y(a.n);
rep(i, a.m) rep(j, a.n) y[j] += x[i] * a.v[i][j];
return y;
}
// O(n^3)
Matrix operator*(const Matrix& b) const {
// verify : https://judge.yosupo.jp/problem/matrix_product
Matrix res(m, b.n);
rep(i, res.m) rep(j, res.n) rep(k, n) res.v[i][j] += v[i][k] * b.v[k][j];
return res;
}
Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; }
// O(n^3 log d)
Matrix pow(ll d) const {
Matrix res(n), pow2 = *this;
while (d > 0) {
if ((d & 1) != 0) res *= pow2;
pow2 *= pow2;
d /= 2;
}
return res;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const Matrix& a) {
rep(i, a.m) {
os << "[";
rep(j, a.n) os << a.v[i][j] << (j < a.n - 1 ? " " : "]");
if (i < a.m - 1) os << "\n";
}
return os;
}
#endif
};
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
ll n; int m;
cin >> n >> m;
mint::set_mod(m);
// dump(naive(n));
int sqrt3 = tonelli_shanks(3);
if (sqrt3 != -1) EXIT(solve_with_sqrt3(n, sqrt3));
mll::set_mod((ll)m * m - 1);
ll d = mll(2).pow(n).val();
Matrix<mint> res(vvm{ {-2, 0},{0, -2} });
res += Matrix<mint>(vvm{ {2, 3},{1, 2} }).pow(d);
res += Matrix<mint>(vvm{ {2, -3},{-1, 2} }).pow(d);
cout << res[0][0] << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0