結果
| 問題 |
No.2142 Segment Zero
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2022-12-02 21:45:15 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 6,355 bytes |
| コンパイル時間 | 2,962 ms |
| コンパイル使用メモリ | 214,216 KB |
| 最終ジャッジ日時 | 2025-02-09 03:42:03 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 34 TLE * 1 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:162:11: warning: ‘l_best’ may be used uninitialized [-Wmaybe-uninitialized]
162 | r_max = l_best - 2;
| ~~~~~~^~~~~~~~~~~~
main.cpp:133:31: note: ‘l_best’ was declared here
133 | ll l , D , dif , dif_best , l_best;
| ^~~~~~
ソースコード
#pragma GCC optimize ( "O3" )
#pragma GCC target ( "avx" )
#include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define ASSERT( A , MIN , MAX ) assert( MIN <= A && A <= MAX )
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define GETLINE( A ) string A; getline( cin , A )
#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define RETURN( ANSWER ) cout << ( ANSWER ) << "\n"; QUIT
#define DOUBLE( PRECISION , ANSWER ) cout << fixed << setprecision( PRECISION ) << ( ANSWER ) << "\n"; QUIT
#define MIN( A , B ) ( A < B ? A : B )
#define MAX( A , B ) ( A < B ? B : A )
#define RESIDUE( A , P ) ( A >= 0 ? A % P : P - ( - A - 1 ) % P - 1 )
#define POWER( ANSWER , ARGUMENT , EXPONENT ) \
TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \
{ \
TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \
TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \
{ \
TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ) % MODULO; \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
// 通常の二分探索
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
ll ANSWER = MAXIMUM; \
{ \
ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \
} else { \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
} \
while( VARIABLE_FOR_BINARY_SEARCH_L != ANSWER ){ \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \
break; \
} else { \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \
} else { \
VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \
} \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
} \
} \
} \
\
// 二進法の二分探索
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
ll ANSWER = MINIMUM; \
{ \
ll VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 = 1; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( MAXIMUM ) - ANSWER; \
while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 <= VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ){ \
VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 *= 2; \
} \
VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2; \
ll VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \
while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 != 0 ){ \
ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 + VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2; \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \
break; \
} else if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \
VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \
} \
VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2; \
} \
ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2; \
} \
\
template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : - a; }
int main()
{
UNTIE;
CEXPR( ll , bound_N , 1000000 );
CIN_ASSERT( N , 1 , bound_N );
ll sum = ( N * ( N + 1 ) ) / 2;
CIN_ASSERT( K , 0 , sum );
sum -= K;
// (A_l + ... + A_r) = (r+l)(r-l+1)/2 = (r^2-l^2+r+l)/2
// (r+l)(r-l+1)/2 <= sum
// <-> l^2 - l + 2sum - r^2 - r >= 0
// <-> l <= one/2 - sqrt(one + 4(r^2 + r) - 8sum)/2 || one/2 + sqrt(one + 4(r^2 + r) - 8sum)/2 <= l
int answer = 0;
ll r_max = N;
ll l , D , dif , dif_best , l_best;
while( sum > 0 ){
dif_best = 0;
FOREQ( r , 1 , r_max ){
D = 1 + 4 * r * ( r + 1 ) - 8 * sum;
if( D > 0 ){
l = ( 1.0 + sqrt( D ) ) / 2 - 1;
FOR( i , 0 , 3 ){
if( 1 <= l && l <= r ){
dif = ( ( r + l ) * ( r - l + 1 ) ) / 2;
if( dif_best < dif && dif <= sum ){
l_best = l;
dif_best = dif;
break;
}
}
++l;
}
} else {
l = 1;
dif = ( ( r + l ) * ( r - l + 1 ) ) / 2;
if( dif_best < dif && dif <= sum ){
l_best = l;
dif_best = dif;
}
}
}
answer++;
sum -= dif_best;
r_max = l_best - 2;
}
RETURN( answer );
}