結果

問題 No.686 Uncertain LIS
ユーザー maspymaspy
提出日時 2022-12-04 03:46:55
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 141 ms / 2,000 ms
コード長 24,020 bytes
コンパイル時間 2,982 ms
コンパイル使用メモリ 234,752 KB
実行使用メモリ 8,236 KB
最終ジャッジ日時 2024-10-11 05:33:23
合計ジャッジ時間 6,107 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 2 ms
6,816 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 2 ms
6,816 KB
testcase_07 AC 2 ms
6,816 KB
testcase_08 AC 2 ms
6,816 KB
testcase_09 AC 119 ms
6,816 KB
testcase_10 AC 113 ms
6,820 KB
testcase_11 AC 68 ms
6,816 KB
testcase_12 AC 5 ms
6,816 KB
testcase_13 AC 34 ms
6,816 KB
testcase_14 AC 58 ms
6,816 KB
testcase_15 AC 38 ms
6,816 KB
testcase_16 AC 99 ms
6,816 KB
testcase_17 AC 141 ms
6,864 KB
testcase_18 AC 138 ms
6,824 KB
testcase_19 AC 140 ms
7,044 KB
testcase_20 AC 133 ms
6,816 KB
testcase_21 AC 133 ms
6,820 KB
testcase_22 AC 38 ms
6,816 KB
testcase_23 AC 38 ms
6,816 KB
testcase_24 AC 49 ms
6,816 KB
testcase_25 AC 48 ms
6,820 KB
testcase_26 AC 17 ms
8,176 KB
testcase_27 AC 50 ms
6,820 KB
testcase_28 AC 51 ms
6,820 KB
testcase_29 AC 51 ms
6,820 KB
testcase_30 AC 50 ms
6,820 KB
testcase_31 AC 2 ms
6,820 KB
testcase_32 AC 15 ms
8,140 KB
testcase_33 AC 18 ms
8,236 KB
testcase_34 AC 137 ms
7,040 KB
testcase_35 AC 137 ms
6,820 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/686"
#line 1 "library/my_template.hpp"
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using pi = pair<ll, ll>;
using vi = vector<ll>;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define FOR4_R(i, a, b, c) for (ll i = (b)-1; i >= ll(a); i -= (c))
#define overload4(a, b, c, d, e, ...) e
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) \
  overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sum = 0;
  for (auto &&a: A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T pick(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}

template <typename T>
T pick(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}

template <typename T>
T pick(pqg<T> &que) {
  assert(que.size());
  T a = que.top();
  que.pop();
  return a;
}

template <typename T>
T pick(vc<T> &que) {
  assert(que.size());
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}

template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}

template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename F>
ll binary_search(F check, ll ok, ll ng) {
  assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return ok;
}

template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = S[i] - first_char; }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

template <typename CNT, typename T>
vc<CNT> bincount(const vc<T> &A, int size) {
  vc<CNT> C(size);
  for (auto &&x: A) { ++C[x]; }
  return C;
}

// stable
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(A.size());
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  int n = len(I);
  vc<T> B(n);
  FOR(i, n) B[i] = A[I[i]];
  return B;
}
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>

namespace fastio {
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.write(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};

struct has_read_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.read(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};

struct Scanner {
  FILE *fp;
  char line[(1 << 15) + 1];
  size_t st = 0, ed = 0;
  void reread() {
    memmove(line, line + st, ed - st);
    ed -= st;
    st = 0;
    ed += fread(line + ed, 1, (1 << 15) - ed, fp);
    line[ed] = '\0';
  }
  bool succ() {
    while (true) {
      if (st == ed) {
        reread();
        if (st == ed) return false;
      }
      while (st != ed && isspace(line[st])) st++;
      if (st != ed) break;
    }
    if (ed - st <= 50) {
      bool sep = false;
      for (size_t i = st; i < ed; i++) {
        if (isspace(line[i])) {
          sep = true;
          break;
        }
      }
      if (!sep) reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    while (true) {
      size_t sz = 0;
      while (st + sz < ed && !isspace(line[st + sz])) sz++;
      ref.append(line + st, sz);
      st += sz;
      if (!sz || st != ed) break;
      reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    bool neg = false;
    if (line[st] == '-') {
      neg = true;
      st++;
    }
    ref = T(0);
    while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
    if (neg) ref = -ref;
    return true;
  }
  template <typename T,
            typename enable_if<has_read<T>::value>::type * = nullptr>
  inline bool read_single(T &x) {
    x.read();
    return true;
  }
  bool read_single(double &ref) {
    string s;
    if (!read_single(s)) return false;
    ref = std::stod(s);
    return true;
  }
  bool read_single(char &ref) {
    string s;
    if (!read_single(s) || s.size() != 1) return false;
    ref = s[0];
    return true;
  }
  template <class T>
  bool read_single(vector<T> &ref) {
    for (auto &d: ref) {
      if (!read_single(d)) return false;
    }
    return true;
  }
  template <class T, class U>
  bool read_single(pair<T, U> &p) {
    return (read_single(p.first) && read_single(p.second));
  }
  template <size_t N = 0, typename T>
  void read_single_tuple(T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
      auto &x = std::get<N>(t);
      read_single(x);
      read_single_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool read_single(tuple<T...> &tpl) {
    read_single_tuple(tpl);
    return true;
  }
  void read() {}
  template <class H, class... T>
  void read(H &h, T &... t) {
    bool f = read_single(h);
    assert(f);
    read(t...);
  }
  Scanner(FILE *fp) : fp(fp) {}
};

struct Printer {
  Printer(FILE *_fp) : fp(_fp) {}
  ~Printer() { flush(); }

  static constexpr size_t SIZE = 1 << 15;
  FILE *fp;
  char line[SIZE], small[50];
  size_t pos = 0;
  void flush() {
    fwrite(line, 1, pos, fp);
    pos = 0;
  }
  void write(const char &val) {
    if (pos == SIZE) flush();
    line[pos++] = val;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  void write(T val) {
    if (pos > (1 << 15) - 50) flush();
    if (val == 0) {
      write('0');
      return;
    }
    if (val < 0) {
      write('-');
      val = -val; // todo min
    }
    size_t len = 0;
    while (val) {
      small[len++] = char(0x30 | (val % 10));
      val /= 10;
    }
    for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
    pos += len;
  }
  void write(const string &s) {
    for (char c: s) write(c);
  }
  void write(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++) write(s[i]);
  }
  void write(const double &x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  void write(const long double &x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  template <typename T,
            typename enable_if<has_write<T>::value>::type * = nullptr>
  inline void write(T x) {
    x.write();
  }
  template <class T>
  void write(const vector<T> &val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  template <class T, class U>
  void write(const pair<T, U> &val) {
    write(val.first);
    write(' ');
    write(val.second);
  }
  template <size_t N = 0, typename T>
  void write_tuple(const T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
      if constexpr (N > 0) { write(' '); }
      const auto &x = std::get<N>(t);
      write(x);
      write_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool write(tuple<T...> &tpl) {
    write_tuple(tpl);
    return true;
  }
  template <class T, size_t S>
  void write(const array<T, S> &val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  void write(i128 val) {
    string s;
    bool negative = 0;
    if (val < 0) {
      negative = 1;
      val = -val;
    }
    while (val) {
      s += '0' + int(val % 10);
      val /= 10;
    }
    if (negative) s += "-";
    reverse(all(s));
    if (len(s) == 0) s = "0";
    write(s);
  }
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  printer.write(head);
  if (sizeof...(Tail)) printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
  scanner.read(head);
  read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "library/alg/monoid/add.hpp"

template <typename X>
struct Monoid_Add {
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
  static constexpr X inverse(const X &x) noexcept { return -x; }
  static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
  static constexpr X unit() { return X(0); }
  static constexpr bool commute = true;
};
#line 2 "library/alg/monoid/max.hpp"

template <class X>
struct Monoid_Max {
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return max(x, y); }
  static constexpr X unit() { return numeric_limits<X>::lowest(); }
  static constexpr bool commute = true;
};
#line 3 "library/alg/acted_monoid/max_add.hpp"

template <typename E>
struct ActedMonoid_Max_Add {
  using Monoid_X = Monoid_Max<E>;
  using Monoid_A = Monoid_Add<E>;
  using X = typename Monoid_X::value_type;
  using A = typename Monoid_A::value_type;
  static constexpr X act(const X &x, const A &a, const ll &size) {
    if (x == numeric_limits<E>::lowest()) return x;
    return x + a;
  }
};
#line 2 "library/ds/splaytree/splaytree.hpp"
// Node 型を別に定義して使う
template <typename Node, int NODES = 1'000'000>
struct SplayTree {
  Node *pool;
  int pid;
  using np = Node *;
  using X = typename Node::value_type;
  using A = typename Node::operator_type;

  SplayTree() : pid(0) { pool = new Node[NODES]; }

  void reset() { pid = 0; }

  np new_node(const X &x) {
    np n = &(pool[pid++]);
    Node::new_node(n, x);
    return n;
  }

  np new_node(const vc<X> &dat) {
    auto dfs = [&](auto &dfs, int l, int r) -> np {
      if (l == r) return nullptr;
      if (r == l + 1) return new_node(dat[l]);
      int m = (l + r) / 2;
      np l_root = dfs(dfs, l, m);
      np r_root = dfs(dfs, m + 1, r);
      np root = new_node(dat[m]);
      root->l = l_root, root->r = r_root;
      if (l_root) l_root->p = root;
      if (r_root) r_root->p = root;
      root->update();
      return root;
    };
    return dfs(dfs, 0, len(dat));
  }

  u32 get_size(np root) { return (root ? root->size : 0); }

  np merge(np l_root, np r_root) {
    if (!l_root) return r_root;
    if (!r_root) return l_root;
    splay_kth(r_root, 0); // splay したので prop 済
    r_root->l = l_root;
    l_root->p = r_root;
    r_root->update();
    return r_root;
  }
  np merge3(np a, np b, np c) { return merge(merge(a, b), c); }
  np merge4(np a, np b, np c, np d) { return merge(merge(merge(a, b), c), d); }

  pair<np, np> split(np root, u32 k) {
    if (k == (root->size)) return {root, nullptr};
    if (k == 0) return {nullptr, root};
    splay_kth(root, k - 1);
    np right = root->r;
    root->r = nullptr, right->p = nullptr;
    root->update();
    return {root, right};
  }
  tuple<np, np, np> split3(np root, u32 l, u32 r) {
    np nm, nr;
    tie(root, nr) = split(root, r);
    tie(root, nm) = split(root, l);
    return {root, nm, nr};
  }
  tuple<np, np, np, np> split4(np root, u32 i, u32 j, u32 k) {
    np d;
    tie(root, d) = split(root, k);
    auto [a, b, c] = split3(root, i, j);
    return {a, b, c, d};
  }

  // 部分木が区間 [l,r) に対応するようなノードを作って返す
  // そのノードが root になるわけではないので、
  // このノードを参照した後にすぐに splay して根に持ち上げること
  void goto_between(np &root, u32 l, u32 r) {
    if (l == 0 && r == root->size) return;
    if (l == 0) {
      splay_kth(root, r);
      root = root->l;
      return;
    }
    if (r == root->size) {
      splay_kth(root, l - 1);
      root = root->r;
      return;
    }
    splay_kth(root, r);
    np rp = root;
    root = rp->l;
    root->p = nullptr;
    splay_kth(root, l - 1);
    root->p = rp;
    rp->l = root;
    rp->update();
    root = root->r;
  }

  vc<X> get_all(const np &root) {
    vc<X> res;
    auto dfs = [&](auto &dfs, np root) -> void {
      if (!root) return;
      root->prop();
      dfs(dfs, root->l);
      res.eb(root->get());
      dfs(dfs, root->r);
    };
    dfs(dfs, root);
    return res;
  }

  X get(np &root, u32 k) {
    splay_kth(root, k);
    return root->get();
  }

  void set(np &root, u32 k, const X &x) {
    splay_kth(root, k);
    root->set(x);
  }

  void multiply(np &root, u32 k, const X &x) {
    splay_kth(root, k);
    root->multiply(x);
  }

  X prod(np &root, u32 l, u32 r) {
    assert(0 <= l && l < r && r <= root->size);
    goto_between(root, l, r);
    X res = root->prod;
    splay(root);
    return res;
  }

  void apply(np &root, u32 l, u32 r, const A &a) {
    assert(0 <= l && l < r && r <= root->size);
    goto_between(root, l, r);
    root->apply(a);
    splay(root);
  }
  void apply(np &root, const A &a) {
    if (!root) return;
    root->apply(a);
  }

  void reverse(np &root, u32 l, u32 r) {
    assert(0 <= l && l < r && r <= root->size);
    goto_between(root, l, r);
    root->reverse();
    splay(root);
  }
  void reverse(np &root) {
    if (!root) return;
    root->reverse();
  }

  void rotate(Node *n) {
    // n を根に近づける。prop, update は rotate の外で行う。
    Node *pp, *p, *c;
    p = n->p;
    pp = p->p;
    if (p->l == n) {
      c = n->r;
      n->r = p;
      p->l = c;
    } else {
      c = n->l;
      n->l = p;
      p->r = c;
    }
    if (pp && pp->l == p) pp->l = n;
    if (pp && pp->r == p) pp->r = n;
    n->p = pp;
    p->p = n;
    if (c) c->p = p;
  }

  void splay(Node *me) {
    // これを呼ぶ時点で、me の祖先(me を除く)は既に prop 済であることを仮定
    // 特に、splay 終了時点で me は upd / prop 済である
    me->prop();
    while (me->p) {
      np p = me->p;
      np pp = p->p;
      if (!pp) {
        rotate(me);
        p->update();
        break;
      }
      bool same = (p->l == me && pp->l == p) || (p->r == me && pp->r == p);
      if (same) rotate(p), rotate(me);
      if (!same) rotate(me), rotate(me);
      pp->update(), p->update();
    }
    // me の update は最後だけでよい
    me->update();
  }

  void splay_kth(np &root, u32 k) {
    assert(0 <= k && k < (root->size));
    while (1) {
      u32 sl = (root->l ? root->l->size : 0);
      if (k == sl) break;
      root->prop();
      if (k < sl)
        root = root->l;
      else {
        k -= sl + 1;
        root = root->r;
      }
    }
    splay(root);
  }

  // 左側のノード全体が check を満たすように切る
  template <typename F>
  pair<np, np> split_max_right(np root, F check) {
    if (!root) return {nullptr, nullptr};
    np c = find_max_right(root, check);
    if (!c) {
      splay(root);
      return {nullptr, root};
    }
    splay(c);
    np right = c->r;
    if (!right) return {c, nullptr};
    right->p = nullptr;
    c->r = nullptr;
    c->update();
    return {c, right};
  }

  // 左側のノード全体の prod が check を満たすように切る
  template <typename F>
  pair<np, np> split_max_right_prod(np root, F check) {
    if (!root) return {nullptr, nullptr};
    np c = find_max_right_prod(root, check);
    if (!c) {
      splay(root);
      return {nullptr, root};
    }
    splay(c);
    np right = c->r;
    if (!right) return {c, nullptr};
    right->p = nullptr;
    c->r = nullptr;
    c->update();
    return {c, right};
  }

  template <typename F>
  np find_max_right(np root, const F &check) {
    // 最後に見つけた ok の点、最後に探索した点
    np last_ok = nullptr, last = nullptr;
    while (root) {
      last = root;
      root->prop();
      if (check(root->x)) {
        last_ok = root;
        root = root->r;
      } else {
        root = root->l;
      }
    }
    splay(last);
    return last_ok;
  }

  template <typename F>
  np find_max_right_prod(np root, const F &check) {
    using Mono = typename Node::Monoid_X;
    X prod = Mono::unit();
    // 最後に見つけた ok の点、最後に探索した点
    np last_ok = nullptr, last = nullptr;
    while (root) {
      last = root;
      root->prop();
      X lprod = prod;
      if (root->l) lprod = Mono::op(lprod, root->l->prod);
      lprod = Mono::op(lprod, root->x);
      if (check(lprod)) {
        prod = lprod;
        last_ok = root;
        root = root->r;
      } else {
        root = root->l;
      }
    }
    splay(last);
    return last_ok;
  }
};
#line 2 "library/ds/splaytree/splaytree_acted_monoid.hpp"

namespace SplayTreeNodes {
template <typename ActedMonoid>
struct Node_AM {
  using Monoid_A = typename ActedMonoid::Monoid_A;
  using Monoid_X = typename ActedMonoid::Monoid_X;
  using A = typename Monoid_A::value_type;
  using X = typename Monoid_X::value_type;
  using value_type = X;
  using operator_type = A;
  using np = Node_AM *;

  np p, l, r;
  X x, prod;
  A lazy;
  u32 size;
  bool rev;

  static void new_node(np n, const X &x) {
    n->p = n->l = n->r = nullptr;
    n->x = n->prod = x;
    n->lazy = Monoid_A::unit();
    n->size = 1;
    n->rev = 0;
  }

  void update() {
    size = 1;
    prod = x;
    if (l) {
      size += l->size;
      prod = Monoid_X::op(l->prod, prod);
    }
    if (r) {
      size += r->size;
      prod = Monoid_X::op(prod, r->prod);
    }
  }

  void prop() {
    if (lazy != Monoid_A::unit()) {
      if (l) { l->apply(lazy); }
      if (r) { r->apply(lazy); }
      lazy = Monoid_A::unit();
    }
    if (rev) {
      if (l) { l->reverse(); }
      if (r) { r->reverse(); }
      rev = 0;
    }
  }

  // update, prop 以外で呼ばれるものは、splay 後であることが想定されている。
  // したがってその時点で update, prop 済であることを仮定してよい。
  X get() { return x; }
  void set(const X &xx) {
    x = xx;
    update();
  }
  void multiply(const X &xx) {
    x = Monoid_X::op(x, xx);
    update();
  }
  void apply(const A &a) {
    x = ActedMonoid::act(x, a, 1);
    prod = ActedMonoid::act(prod, a, size);
    lazy = Monoid_A::op(lazy, a);
  }
  void reverse() {
    swap(l, r);
    rev ^= 1;
  }
};
template <typename ActedMonoid, int NODES>
using SplayTree_ActedMonoid = SplayTree<Node_AM<ActedMonoid>, NODES>;
} // namespace SplayTreeNodes

using SplayTreeNodes::SplayTree_ActedMonoid;
#line 6 "main.cpp"

void solve() {
  LL(N);
  using AM = ActedMonoid_Max_Add<int>;
  SplayTree_ActedMonoid<AM, 100'010> X;
  using np = decltype(X)::np;

  const int INF = 1 << 30;
  np root = X.new_node(INF);

  FOR(N) {
    if (root->prod != INF) root = X.merge(root, X.new_node(INF));
    LL(L, R);
    // L未満 / R 未満
    np a, b, c, c1, c2;
    auto check_L = [&](int e) -> bool { return e < L; };
    auto check_R = [&](int e) -> bool { return e < R; };
    tie(a, root) = X.split_max_right(root, check_L);
    tie(b, c) = X.split_max_right(root, check_R);
    tie(c1, c2) = X.split(c, 1);
    X.apply(b, 1);
    X.set(c1, 0, L);
    root = X.merge4(a, c1, b, c2);
  }
  auto check = [&](int e) -> bool { return e < INF; };
  auto [n1, n2] = X.split_max_right(root, check);
  int ANS = (n1 ? n1->size : 0);
  print(ANS);
}

signed main() {
  solve();

  return 0;
}
0