結果
問題 | No.686 Uncertain LIS |
ユーザー | maspy |
提出日時 | 2022-12-04 03:46:55 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 141 ms / 2,000 ms |
コード長 | 24,020 bytes |
コンパイル時間 | 2,982 ms |
コンパイル使用メモリ | 234,752 KB |
実行使用メモリ | 8,236 KB |
最終ジャッジ日時 | 2024-10-11 05:33:23 |
合計ジャッジ時間 | 6,107 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,820 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 2 ms
6,816 KB |
testcase_09 | AC | 119 ms
6,816 KB |
testcase_10 | AC | 113 ms
6,820 KB |
testcase_11 | AC | 68 ms
6,816 KB |
testcase_12 | AC | 5 ms
6,816 KB |
testcase_13 | AC | 34 ms
6,816 KB |
testcase_14 | AC | 58 ms
6,816 KB |
testcase_15 | AC | 38 ms
6,816 KB |
testcase_16 | AC | 99 ms
6,816 KB |
testcase_17 | AC | 141 ms
6,864 KB |
testcase_18 | AC | 138 ms
6,824 KB |
testcase_19 | AC | 140 ms
7,044 KB |
testcase_20 | AC | 133 ms
6,816 KB |
testcase_21 | AC | 133 ms
6,820 KB |
testcase_22 | AC | 38 ms
6,816 KB |
testcase_23 | AC | 38 ms
6,816 KB |
testcase_24 | AC | 49 ms
6,816 KB |
testcase_25 | AC | 48 ms
6,820 KB |
testcase_26 | AC | 17 ms
8,176 KB |
testcase_27 | AC | 50 ms
6,820 KB |
testcase_28 | AC | 51 ms
6,820 KB |
testcase_29 | AC | 51 ms
6,820 KB |
testcase_30 | AC | 50 ms
6,820 KB |
testcase_31 | AC | 2 ms
6,820 KB |
testcase_32 | AC | 15 ms
8,140 KB |
testcase_33 | AC | 18 ms
8,236 KB |
testcase_34 | AC | 137 ms
7,040 KB |
testcase_35 | AC | 137 ms
6,820 KB |
ソースコード
#line 1 "main.cpp" #define PROBLEM "https://yukicoder.me/problems/no/686" #line 1 "library/my_template.hpp" #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; using ll = long long; using pi = pair<ll, ll>; using vi = vector<ll>; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vec(type, name, ...) vector<type> name(__VA_ARGS__) #define vv(type, name, h, ...) \ vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector<vector<vector<type>>> name( \ h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name( \ a, vector<vector<vector<type>>>( \ b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define FOR4_R(i, a, b, c) for (ll i = (b)-1; i >= ll(a); i -= (c)) #define overload4(a, b, c, d, e, ...) e #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) \ overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s)) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll template <typename T, typename U> T SUM(const vector<U> &A) { T sum = 0; for (auto &&a: A) sum += a; return sum; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()) int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T pick(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T pick(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T pick(pqg<T> &que) { assert(que.size()); T a = que.top(); que.pop(); return a; } template <typename T> T pick(vc<T> &que) { assert(que.size()); T a = que.back(); que.pop_back(); return a; } template <typename T, typename U> T ceil(T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); } template <typename T, typename U> T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); } template <typename T, typename U> pair<T, T> divmod(T x, U y) { T q = floor(x, y); return {q, x - q * y}; } template <typename F> ll binary_search(F check, ll ok, ll ng) { assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = S[i] - first_char; } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } template <typename CNT, typename T> vc<CNT> bincount(const vc<T> &A, int size) { vc<CNT> C(size); for (auto &&x: A) { ++C[x]; } return C; } // stable template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(A.size()); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { int n = len(I); vc<T> B(n); FOR(i, n) B[i] = A[I[i]]; return B; } #line 1 "library/other/io.hpp" // based on yosupo's fastio #include <unistd.h> namespace fastio { // クラスが read(), print() を持っているかを判定するメタ関数 struct has_write_impl { template <class T> static auto check(T &&x) -> decltype(x.write(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) { }; struct has_read_impl { template <class T> static auto check(T &&x) -> decltype(x.read(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {}; struct Scanner { FILE *fp; char line[(1 << 15) + 1]; size_t st = 0, ed = 0; void reread() { memmove(line, line + st, ed - st); ed -= st; st = 0; ed += fread(line + ed, 1, (1 << 15) - ed, fp); line[ed] = '\0'; } bool succ() { while (true) { if (st == ed) { reread(); if (st == ed) return false; } while (st != ed && isspace(line[st])) st++; if (st != ed) break; } if (ed - st <= 50) { bool sep = false; for (size_t i = st; i < ed; i++) { if (isspace(line[i])) { sep = true; break; } } if (!sep) reread(); } return true; } template <class T, enable_if_t<is_same<T, string>::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; while (true) { size_t sz = 0; while (st + sz < ed && !isspace(line[st + sz])) sz++; ref.append(line + st, sz); st += sz; if (!sz || st != ed) break; reread(); } return true; } template <class T, enable_if_t<is_integral<T>::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; bool neg = false; if (line[st] == '-') { neg = true; st++; } ref = T(0); while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); } if (neg) ref = -ref; return true; } template <typename T, typename enable_if<has_read<T>::value>::type * = nullptr> inline bool read_single(T &x) { x.read(); return true; } bool read_single(double &ref) { string s; if (!read_single(s)) return false; ref = std::stod(s); return true; } bool read_single(char &ref) { string s; if (!read_single(s) || s.size() != 1) return false; ref = s[0]; return true; } template <class T> bool read_single(vector<T> &ref) { for (auto &d: ref) { if (!read_single(d)) return false; } return true; } template <class T, class U> bool read_single(pair<T, U> &p) { return (read_single(p.first) && read_single(p.second)); } template <size_t N = 0, typename T> void read_single_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); read_single(x); read_single_tuple<N + 1>(t); } } template <class... T> bool read_single(tuple<T...> &tpl) { read_single_tuple(tpl); return true; } void read() {} template <class H, class... T> void read(H &h, T &... t) { bool f = read_single(h); assert(f); read(t...); } Scanner(FILE *fp) : fp(fp) {} }; struct Printer { Printer(FILE *_fp) : fp(_fp) {} ~Printer() { flush(); } static constexpr size_t SIZE = 1 << 15; FILE *fp; char line[SIZE], small[50]; size_t pos = 0; void flush() { fwrite(line, 1, pos, fp); pos = 0; } void write(const char &val) { if (pos == SIZE) flush(); line[pos++] = val; } template <class T, enable_if_t<is_integral<T>::value, int> = 0> void write(T val) { if (pos > (1 << 15) - 50) flush(); if (val == 0) { write('0'); return; } if (val < 0) { write('-'); val = -val; // todo min } size_t len = 0; while (val) { small[len++] = char(0x30 | (val % 10)); val /= 10; } for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; } pos += len; } void write(const string &s) { for (char c: s) write(c); } void write(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) write(s[i]); } void write(const double &x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } void write(const long double &x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } template <typename T, typename enable_if<has_write<T>::value>::type * = nullptr> inline void write(T x) { x.write(); } template <class T> void write(const vector<T> &val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } template <class T, class U> void write(const pair<T, U> &val) { write(val.first); write(' '); write(val.second); } template <size_t N = 0, typename T> void write_tuple(const T &t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { write(' '); } const auto &x = std::get<N>(t); write(x); write_tuple<N + 1>(t); } } template <class... T> bool write(tuple<T...> &tpl) { write_tuple(tpl); return true; } template <class T, size_t S> void write(const array<T, S> &val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } void write(i128 val) { string s; bool negative = 0; if (val < 0) { negative = 1; val = -val; } while (val) { s += '0' + int(val % 10); val /= 10; } if (negative) s += "-"; reverse(all(s)); if (len(s) == 0) s = "0"; write(s); } }; Scanner scanner = Scanner(stdin); Printer printer = Printer(stdout); void flush() { printer.flush(); } void print() { printer.write('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { printer.write(head); if (sizeof...(Tail)) printer.write(' '); print(forward<Tail>(tail)...); } void read() {} template <class Head, class... Tail> void read(Head &head, Tail &... tail) { scanner.read(head); read(tail...); } } // namespace fastio using fastio::print; using fastio::flush; using fastio::read; #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 2 "library/alg/monoid/add.hpp" template <typename X> struct Monoid_Add { using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x + y; } static constexpr X inverse(const X &x) noexcept { return -x; } static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; } static constexpr X unit() { return X(0); } static constexpr bool commute = true; }; #line 2 "library/alg/monoid/max.hpp" template <class X> struct Monoid_Max { using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return max(x, y); } static constexpr X unit() { return numeric_limits<X>::lowest(); } static constexpr bool commute = true; }; #line 3 "library/alg/acted_monoid/max_add.hpp" template <typename E> struct ActedMonoid_Max_Add { using Monoid_X = Monoid_Max<E>; using Monoid_A = Monoid_Add<E>; using X = typename Monoid_X::value_type; using A = typename Monoid_A::value_type; static constexpr X act(const X &x, const A &a, const ll &size) { if (x == numeric_limits<E>::lowest()) return x; return x + a; } }; #line 2 "library/ds/splaytree/splaytree.hpp" // Node 型を別に定義して使う template <typename Node, int NODES = 1'000'000> struct SplayTree { Node *pool; int pid; using np = Node *; using X = typename Node::value_type; using A = typename Node::operator_type; SplayTree() : pid(0) { pool = new Node[NODES]; } void reset() { pid = 0; } np new_node(const X &x) { np n = &(pool[pid++]); Node::new_node(n, x); return n; } np new_node(const vc<X> &dat) { auto dfs = [&](auto &dfs, int l, int r) -> np { if (l == r) return nullptr; if (r == l + 1) return new_node(dat[l]); int m = (l + r) / 2; np l_root = dfs(dfs, l, m); np r_root = dfs(dfs, m + 1, r); np root = new_node(dat[m]); root->l = l_root, root->r = r_root; if (l_root) l_root->p = root; if (r_root) r_root->p = root; root->update(); return root; }; return dfs(dfs, 0, len(dat)); } u32 get_size(np root) { return (root ? root->size : 0); } np merge(np l_root, np r_root) { if (!l_root) return r_root; if (!r_root) return l_root; splay_kth(r_root, 0); // splay したので prop 済 r_root->l = l_root; l_root->p = r_root; r_root->update(); return r_root; } np merge3(np a, np b, np c) { return merge(merge(a, b), c); } np merge4(np a, np b, np c, np d) { return merge(merge(merge(a, b), c), d); } pair<np, np> split(np root, u32 k) { if (k == (root->size)) return {root, nullptr}; if (k == 0) return {nullptr, root}; splay_kth(root, k - 1); np right = root->r; root->r = nullptr, right->p = nullptr; root->update(); return {root, right}; } tuple<np, np, np> split3(np root, u32 l, u32 r) { np nm, nr; tie(root, nr) = split(root, r); tie(root, nm) = split(root, l); return {root, nm, nr}; } tuple<np, np, np, np> split4(np root, u32 i, u32 j, u32 k) { np d; tie(root, d) = split(root, k); auto [a, b, c] = split3(root, i, j); return {a, b, c, d}; } // 部分木が区間 [l,r) に対応するようなノードを作って返す // そのノードが root になるわけではないので、 // このノードを参照した後にすぐに splay して根に持ち上げること void goto_between(np &root, u32 l, u32 r) { if (l == 0 && r == root->size) return; if (l == 0) { splay_kth(root, r); root = root->l; return; } if (r == root->size) { splay_kth(root, l - 1); root = root->r; return; } splay_kth(root, r); np rp = root; root = rp->l; root->p = nullptr; splay_kth(root, l - 1); root->p = rp; rp->l = root; rp->update(); root = root->r; } vc<X> get_all(const np &root) { vc<X> res; auto dfs = [&](auto &dfs, np root) -> void { if (!root) return; root->prop(); dfs(dfs, root->l); res.eb(root->get()); dfs(dfs, root->r); }; dfs(dfs, root); return res; } X get(np &root, u32 k) { splay_kth(root, k); return root->get(); } void set(np &root, u32 k, const X &x) { splay_kth(root, k); root->set(x); } void multiply(np &root, u32 k, const X &x) { splay_kth(root, k); root->multiply(x); } X prod(np &root, u32 l, u32 r) { assert(0 <= l && l < r && r <= root->size); goto_between(root, l, r); X res = root->prod; splay(root); return res; } void apply(np &root, u32 l, u32 r, const A &a) { assert(0 <= l && l < r && r <= root->size); goto_between(root, l, r); root->apply(a); splay(root); } void apply(np &root, const A &a) { if (!root) return; root->apply(a); } void reverse(np &root, u32 l, u32 r) { assert(0 <= l && l < r && r <= root->size); goto_between(root, l, r); root->reverse(); splay(root); } void reverse(np &root) { if (!root) return; root->reverse(); } void rotate(Node *n) { // n を根に近づける。prop, update は rotate の外で行う。 Node *pp, *p, *c; p = n->p; pp = p->p; if (p->l == n) { c = n->r; n->r = p; p->l = c; } else { c = n->l; n->l = p; p->r = c; } if (pp && pp->l == p) pp->l = n; if (pp && pp->r == p) pp->r = n; n->p = pp; p->p = n; if (c) c->p = p; } void splay(Node *me) { // これを呼ぶ時点で、me の祖先(me を除く)は既に prop 済であることを仮定 // 特に、splay 終了時点で me は upd / prop 済である me->prop(); while (me->p) { np p = me->p; np pp = p->p; if (!pp) { rotate(me); p->update(); break; } bool same = (p->l == me && pp->l == p) || (p->r == me && pp->r == p); if (same) rotate(p), rotate(me); if (!same) rotate(me), rotate(me); pp->update(), p->update(); } // me の update は最後だけでよい me->update(); } void splay_kth(np &root, u32 k) { assert(0 <= k && k < (root->size)); while (1) { u32 sl = (root->l ? root->l->size : 0); if (k == sl) break; root->prop(); if (k < sl) root = root->l; else { k -= sl + 1; root = root->r; } } splay(root); } // 左側のノード全体が check を満たすように切る template <typename F> pair<np, np> split_max_right(np root, F check) { if (!root) return {nullptr, nullptr}; np c = find_max_right(root, check); if (!c) { splay(root); return {nullptr, root}; } splay(c); np right = c->r; if (!right) return {c, nullptr}; right->p = nullptr; c->r = nullptr; c->update(); return {c, right}; } // 左側のノード全体の prod が check を満たすように切る template <typename F> pair<np, np> split_max_right_prod(np root, F check) { if (!root) return {nullptr, nullptr}; np c = find_max_right_prod(root, check); if (!c) { splay(root); return {nullptr, root}; } splay(c); np right = c->r; if (!right) return {c, nullptr}; right->p = nullptr; c->r = nullptr; c->update(); return {c, right}; } template <typename F> np find_max_right(np root, const F &check) { // 最後に見つけた ok の点、最後に探索した点 np last_ok = nullptr, last = nullptr; while (root) { last = root; root->prop(); if (check(root->x)) { last_ok = root; root = root->r; } else { root = root->l; } } splay(last); return last_ok; } template <typename F> np find_max_right_prod(np root, const F &check) { using Mono = typename Node::Monoid_X; X prod = Mono::unit(); // 最後に見つけた ok の点、最後に探索した点 np last_ok = nullptr, last = nullptr; while (root) { last = root; root->prop(); X lprod = prod; if (root->l) lprod = Mono::op(lprod, root->l->prod); lprod = Mono::op(lprod, root->x); if (check(lprod)) { prod = lprod; last_ok = root; root = root->r; } else { root = root->l; } } splay(last); return last_ok; } }; #line 2 "library/ds/splaytree/splaytree_acted_monoid.hpp" namespace SplayTreeNodes { template <typename ActedMonoid> struct Node_AM { using Monoid_A = typename ActedMonoid::Monoid_A; using Monoid_X = typename ActedMonoid::Monoid_X; using A = typename Monoid_A::value_type; using X = typename Monoid_X::value_type; using value_type = X; using operator_type = A; using np = Node_AM *; np p, l, r; X x, prod; A lazy; u32 size; bool rev; static void new_node(np n, const X &x) { n->p = n->l = n->r = nullptr; n->x = n->prod = x; n->lazy = Monoid_A::unit(); n->size = 1; n->rev = 0; } void update() { size = 1; prod = x; if (l) { size += l->size; prod = Monoid_X::op(l->prod, prod); } if (r) { size += r->size; prod = Monoid_X::op(prod, r->prod); } } void prop() { if (lazy != Monoid_A::unit()) { if (l) { l->apply(lazy); } if (r) { r->apply(lazy); } lazy = Monoid_A::unit(); } if (rev) { if (l) { l->reverse(); } if (r) { r->reverse(); } rev = 0; } } // update, prop 以外で呼ばれるものは、splay 後であることが想定されている。 // したがってその時点で update, prop 済であることを仮定してよい。 X get() { return x; } void set(const X &xx) { x = xx; update(); } void multiply(const X &xx) { x = Monoid_X::op(x, xx); update(); } void apply(const A &a) { x = ActedMonoid::act(x, a, 1); prod = ActedMonoid::act(prod, a, size); lazy = Monoid_A::op(lazy, a); } void reverse() { swap(l, r); rev ^= 1; } }; template <typename ActedMonoid, int NODES> using SplayTree_ActedMonoid = SplayTree<Node_AM<ActedMonoid>, NODES>; } // namespace SplayTreeNodes using SplayTreeNodes::SplayTree_ActedMonoid; #line 6 "main.cpp" void solve() { LL(N); using AM = ActedMonoid_Max_Add<int>; SplayTree_ActedMonoid<AM, 100'010> X; using np = decltype(X)::np; const int INF = 1 << 30; np root = X.new_node(INF); FOR(N) { if (root->prod != INF) root = X.merge(root, X.new_node(INF)); LL(L, R); // L未満 / R 未満 np a, b, c, c1, c2; auto check_L = [&](int e) -> bool { return e < L; }; auto check_R = [&](int e) -> bool { return e < R; }; tie(a, root) = X.split_max_right(root, check_L); tie(b, c) = X.split_max_right(root, check_R); tie(c1, c2) = X.split(c, 1); X.apply(b, 1); X.set(c1, 0, L); root = X.merge4(a, c1, b, c2); } auto check = [&](int e) -> bool { return e < INF; }; auto [n1, n2] = X.split_max_right(root, check); int ANS = (n1 ? n1->size : 0); print(ANS); } signed main() { solve(); return 0; }