結果
| 問題 |
No.2149 Vanitas Vanitatum
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2022-12-07 08:45:27 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 7 ms / 2,000 ms |
| コード長 | 7,789 bytes |
| コンパイル時間 | 11,464 ms |
| コンパイル使用メモリ | 278,816 KB |
| 最終ジャッジ日時 | 2025-02-09 06:00:11 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 24 |
ソースコード
#pragma GCC optimize ( "O3" )
#pragma GCC target ( "avx" )
#include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define ASSERT( A , MIN , MAX ) assert( MIN <= A && A <= MAX )
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define GETLINE( A ) string A; getline( cin , A )
#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define COUT( ANSWER ) cout << ( ANSWER ) << "\n";
#define RETURN( ANSWER ) COUT( ANSWER ); QUIT
#define DOUBLE( PRECISION , ANSWER ) cout << fixed << setprecision( PRECISION ) << ( ANSWER ) << "\n"; QUIT
#define POWER( ANSWER , ARGUMENT , EXPONENT ) \
TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \
{ \
TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \
TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \
{ \
TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ARGUMENT ) % MODULO ) % MODULO; \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
// 通常の二分探索
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
ll ANSWER = MAXIMUM; \
{ \
ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \
} else { \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
} \
while( VARIABLE_FOR_BINARY_SEARCH_L != ANSWER ){ \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \
break; \
} else { \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \
} else { \
VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \
} \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
} \
} \
} \
\
// 二進法の二分探索
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
ll ANSWER = MINIMUM; \
{ \
ll VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 = 1; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( MAXIMUM ) - ANSWER; \
while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 <= VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ){ \
VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 *= 2; \
} \
VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2; \
ll VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \
while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 != 0 ){ \
ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 + VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2; \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \
break; \
} else if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \
VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \
} \
VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2; \
} \
ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2; \
} \
\
template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : - a; }
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - ( - a - 1 ) % p - 1; }
vector<int> Difference( const vector<int>& A )
{
int size = A.size();
vector<int> answer{};
if( size == 0 ){
return answer;
}
answer.push_back( A[0] );
FOR( i , 1 , size ){
answer.push_back( A[i] - A[i-1] );
}
return answer;
}
vector<int> inv_Difference( const vector<int>& A )
{
int size = A.size();
vector<int> answer{};
int sum = 0;
FOR( i , 0 , size ){
answer.push_back( sum += A[i] );
}
return answer;
}
string to_bit( const vector<int>& A )
{
int size = A.size();
string answer{};
FOR( i , 0 , size ){
int Ai = A[i];
FOR( j , 0 , Ai ){
answer += "1";
}
answer += "0";
}
return answer;
}
vector<int> inv_to_bit( const string& A )
{
int size = A.size();
vector<int> answer{};
int i_start = 0;
FOR( i , 0 , size ){
if( A.substr( i , 1 ) == "0" ){
answer.push_back( i - i_start );
i_start = i + 1;
}
}
return answer;
}
int main()
{
UNTIE;
CEXPR( ll , bound , 1000 );
CIN_ASSERT( N , 1 , bound );
vector<int> A{};
int Ai_prev = 1;
ll sum_A = 0;
REPEAT( N ){
CIN_ASSERT( Ai , Ai_prev , bound );
A.push_back( Ai_prev = Ai );
sum_A += Ai;
}
string A_bit = to_bit( Difference( A ) );
string B_bit[2] = {};
int size_A_bit = A_bit.size();
FOR( i , 0 , size_A_bit ){
B_bit[i % 2] += A_bit.substr( i , 1 );
}
vector<int> B_dif[2] = { inv_to_bit( B_bit[0] ) , inv_to_bit( B_bit[1] ) };
vector<int> B[2] = { inv_Difference( B_dif[0] ) , inv_Difference( B_dif[1] ) };
int sum_B[2] = {};
FOR( d , 0 , 2 ){
int& sum_B_d = sum_B[d];
vector<int>& B_d = B[d];
int size_B_d = B_d.size();
FOR( i , 0 , size_B_d ){
sum_B_d += B_d[i];
}
}
ll sum_B_01 = sum_B[0] + sum_B[1];
if( sum_B_01 * 2 != sum_A ){
RETURN( 0 );
}
CEXPR( ll , P , 998244353 );
ll answer = 1;
FOREQ( i , 1 , sum_B_01 ){
( answer *= i ) %= P;
}
ll q = 1;
FOR( d , 0 , 2 ){
vector<int>& B_d = B[d];
vector<int>& B_d_dif = B_dif[d];
int size_B_d = B_d.size();
vector<int> transpose_B_d{};
FOR( i , 0 , size_B_d ){
int B_d_dif_i = B_d_dif[i];
FOR( j , 0 , B_d_dif_i ){
transpose_B_d.push_back( size_B_d - i );
}
}
FOR( i , 0 , size_B_d ){
int B_d_i = B_d[i];
FOR( j , 0 , B_d_i ){
( q *= ( B_d_i - j ) + ( transpose_B_d[j] - ( size_B_d - i ) ) ) %= P;
}
}
}
POWER_MOD( inv_q , q , P - 2 , P );
( answer *= inv_q ) %= P;
RETURN( answer );
}