結果
| 問題 |
No.2156 ぞい文字列
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2022-12-09 22:15:03 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3 ms / 2,000 ms |
| コード長 | 35,486 bytes |
| コンパイル時間 | 14,206 ms |
| コンパイル使用メモリ | 299,408 KB |
| 最終ジャッジ日時 | 2025-02-09 08:16:46 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 16 |
ソースコード
#pragma GCC optimize ( "O3" )
#pragma GCC target ( "avx" )
#include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define ASSERT( A , MIN , MAX ) assert( MIN <= A && A <= MAX )
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define GETLINE( A ) string A; getline( cin , A )
#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define COUT( ANSWER ) cout << ( ANSWER ) << "\n";
#define RETURN( ANSWER ) COUT( ANSWER ); QUIT
#define DOUBLE( PRECISION , ANSWER ) cout << fixed << setprecision( PRECISION ) << ( ANSWER ) << "\n"; QUIT
#define POWER( ANSWER , ARGUMENT , EXPONENT ) \
TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \
{ \
TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \
TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \
{ \
TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ARGUMENT ) % MODULO ) % MODULO; \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define FACTORIAL_MOD( ANSWER , ANSWER_INV , MAX_I , LENGTH , MODULO ) \
ll ANSWER[LENGTH]; \
ll ANSWER_INV[LENGTH]; \
{ \
ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \
FOREQ( i , 1 , MAX_I ){ \
ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= MODULO; \
} \
POWER_MOD( FACTORIAL_MAX_INV , ANSWER[MAX_I] , MODULO - 2 , MODULO ); \
ANSWER_INV[MAX_I] = FACTORIAL_MAX_INV; \
FOREQINV( i , MAX_I - 1 , 0 ){ \
ANSWER_INV[i] = ( FACTORIAL_MAX_INV *= i + 1 ) %= MODULO; \
} \
} \
\
// 通常の二分探索
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
ll ANSWER = MAXIMUM; \
{ \
ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \
} else { \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
} \
while( VARIABLE_FOR_BINARY_SEARCH_L != ANSWER ){ \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \
break; \
} else { \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \
} else { \
VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \
} \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
} \
} \
} \
\
// 二進法の二分探索
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
ll ANSWER = MINIMUM; \
{ \
ll VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 = 1; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( MAXIMUM ) - ANSWER; \
while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 <= VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ){ \
VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 *= 2; \
} \
VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2; \
ll VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \
while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 != 0 ){ \
ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 + VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2; \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \
break; \
} else if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \
VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \
} \
VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2; \
} \
ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2; \
} \
\
template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : - a; }
// template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - ( - a - 1 ) % p - 1; }
template <typename T>
using VLArray = list<T>;
// template <typename T>
// using LineTypeForMatrix = VLArray<T>;
// vectorの方が乗法の計算が高速
template <typename T>
using LineTypeForMatrix = vector<T>;
template <typename T>
using TableTypeForMatrix = LineTypeForMatrix<LineTypeForMatrix<T> >;
// using SizeTypeForMatrix = uint;
using SizeTypeForMatrix = ll;
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
class Matrix
{
private:
TableTypeForMatrix<T> m_M;
public:
// argsの長さがXYでなくてもコンパイルエラーとならないがサポート外である。
template <typename... Args> Matrix( const Args&... args ) noexcept;
inline Matrix( const Matrix<Y,X,T>& mat ) noexcept;
// ( X , Y )行列でないものも引数に取れるがサポート外である。
template <typename... Args> inline Matrix( const TableTypeForMatrix<T>& M ) noexcept;
Matrix<Y,X,T>& operator=( const Matrix<Y,X,T>& mat ) noexcept;
Matrix<Y,X,T>& operator+=( const Matrix<Y,X,T>& mat );
Matrix<Y,X,T>& operator-=( const Matrix<Y,X,T>& mat );
Matrix<Y,X,T>& operator*=( const T& scalar ) noexcept;
// 行や列の長さを変更可能だがサポート外である。
inline TableTypeForMatrix<T>& RefTable() noexcept;
inline const TableTypeForMatrix<T>& GetTable() const noexcept;
static inline const Matrix<Y,X,T>& Unit() noexcept;
private:
static inline void ConstructTable( TableTypeForMatrix<T>& M , LineTypeForMatrix<T>& vec ) noexcept;
template <typename Arg , typename... Args> static void ConstructTable( TableTypeForMatrix<T>& M , LineTypeForMatrix<T>& vec , const Arg& arg , const Args&... args ) noexcept;
static Matrix<Y,X,T> Unit_Body() noexcept;
};
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> inline Matrix<Y,X,T> operator==( const Matrix<Y,X,T>& mat1 , const Matrix<Y,X,T>& mat2 ) noexcept;
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> inline Matrix<Y,X,T> operator!=( const Matrix<Y,X,T>& mat1 , const Matrix<Y,X,T>& mat2 ) noexcept;
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T> operator+( const Matrix<Y,X,T>& mat1 , const Matrix<Y,X,T>& mat2 );
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T> operator-( const Matrix<Y,X,T>& mat1 , const Matrix<Y,X,T>& mat2 );
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , SizeTypeForMatrix Z , typename T>
Matrix<Y,Z,T> operator*( const Matrix<Y,X,T>& mat1 , const Matrix<X,Z,T>& mat2 );
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T> operator*( const T& scalar , const Matrix<Y,X,T>& mat );
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<X,Y,T> Transpose( const Matrix<Y,X,T>& mat );
template <SizeTypeForMatrix X , typename T>
T Trace( const Matrix<X,X,T>& mat );
// ../Arithmetic/Power/a_Body.hppにて定義
// template <typename T , typename UINT>
// T PowerBinaryMethod( const T& t , const UINT& num , const T& init , const bool& for_right_multiplication );
// template <typename T , typename UINT>
// Matrix<2,2,T> PowerBinaryMethod( const Matrix<2,2,T>& mat , const UINT& num , const Matrix<2,2,T>& init_dummy , const bool& for_right_multiplication_dummy );
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> template <typename... Args>
Matrix<Y,X,T>::Matrix( const Args&... args ) noexcept
: m_M()
{
TableTypeForMatrix<T> M{};
LineTypeForMatrix<T> vec{};
ConstructTable( M , vec , args... );
m_M = M;
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> inline Matrix<Y,X,T>::Matrix( const Matrix<Y,X,T>& mat ) noexcept : m_M( mat.m_M ) {}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> template <typename... Args> inline Matrix<Y,X,T>::Matrix( const TableTypeForMatrix<T>& M ) noexcept : m_M( M ) {}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T>& Matrix<Y,X,T>::operator=( const Matrix<Y,X,T>& mat ) noexcept
{
m_M = mat.m_M;
return *this;
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T>& Matrix<Y,X,T>::operator+=( const Matrix<Y,X,T>& mat )
{
auto itr1y = m_M.begin() , end1y = m_M.end();
auto itr2y = mat.m_M.begin();
while( itr1y != end1y ){
auto itr1xy = itr1y->begin() , end1xy = itr1y->end();
auto itr2xy = itr2y->begin();
while( itr1xy != end1xy ){
*itr1xy += *itr2xy;
itr1xy++;
itr2xy++;
}
itr1y++;
itr2y++;
}
return *this;
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T>& Matrix<Y,X,T>::operator-=( const Matrix<Y,X,T>& mat )
{
auto itr1y = m_M.begin() , end1y = m_M.end();
auto itr2y = mat.m_M.begin();
while( itr1y != end1y ){
auto itr1xy = itr1y->begin() , end1xy = itr1y->end();
auto itr2xy = itr2y->begin();
while( itr1xy != end1xy ){
*itr1xy -= *itr2xy;
itr1xy++;
itr2xy++;
}
itr1y++;
itr2y++;
}
return *this;
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> Matrix<Y,X,T>& Matrix<Y,X,T>::operator*=( const T& scalar ) noexcept
{
for( auto itry = m_M.begin() , endy = m_M.end() ; itry != endy ; itry++ ){
for( auto itrxy = itry->begin() , endxy = itry->end() ; itrxy != endxy ; itrxy++ ){
*itrxy *= scalar;
}
}
return *this;
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> inline TableTypeForMatrix<T>& Matrix<Y,X,T>::RefTable() noexcept { return m_M; }
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> inline const TableTypeForMatrix<T>& Matrix<Y,X,T>::GetTable() const noexcept { return m_M; }
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> inline const Matrix<Y,X,T>& Matrix<Y,X,T>::Unit() noexcept { static const Matrix<Y,X,T> unit = Unit_Body(); return unit; }
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T> Matrix<Y,X,T>::Unit_Body() noexcept
{
TableTypeForMatrix<T> M{};
for( SizeTypeForMatrix y = 0 ; y < Y ; y++ ){
LineTypeForMatrix<T> vec{};
for( SizeTypeForMatrix x = 0 ; x < X ; x++ ){
vec.push_back( x == y ? 1 : 0 );
}
M.push_back( vec );
}
return Matrix<Y,X,T>( M );
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> inline void Matrix<Y,X,T>::ConstructTable( TableTypeForMatrix<T>& M , LineTypeForMatrix<T>& vec ) noexcept { M.push_back( vec ); vec.clear(); }
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> template <typename Arg , typename... Args> void Matrix<Y,X,T>::ConstructTable( TableTypeForMatrix<T>& M , LineTypeForMatrix<T>& vec , const Arg& arg , const Args&... args ) noexcept
{
vec.push_back( arg );
if( vec.size() == X ){
ConstructTable( M , vec );
}
if( M.size() < Y ){
ConstructTable( M , vec , args... );
}
return;
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> inline Matrix<Y,X,T> operator==( const Matrix<Y,X,T>& mat1 , const Matrix<Y,X,T>& mat2 ) noexcept { return mat1.GetTable() == mat2.GetTable(); }
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T> inline Matrix<Y,X,T> operator!=( const Matrix<Y,X,T>& mat1 , const Matrix<Y,X,T>& mat2 ) noexcept { return !( mat1 == mat2 ); }
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T> operator+( const Matrix<Y,X,T>& mat1 , const Matrix<Y,X,T>& mat2 )
{
Matrix<Y,X,T> mat1_copy = mat1;
mat1_copy += mat2;
return mat1_copy;
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T> operator-( const Matrix<Y,X,T>& mat1 , const Matrix<Y,X,T>& mat2 )
{
Matrix<Y,X,T> mat1_copy = mat1;
mat1_copy -= mat2;
return mat1_copy;
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , SizeTypeForMatrix Z , typename T> inline Matrix<Y,Z,T> operator*( const Matrix<Y,X,T>& mat1 , const Matrix<X,Z,T>& mat2 )
{
const TableTypeForMatrix<T>& M1 = mat1.GetTable();
const TableTypeForMatrix<T>& M2 = mat2.GetTable();
TableTypeForMatrix<T> M_prod{};
auto begin2x = M2.begin();
for( auto itr1y = M1.begin() , end1y = M1.end() ; itr1y != end1y ; itr1y++ ){
LineTypeForMatrix<T> vec{};
auto begin1yx = itr1y->begin() , end1yx = itr1y->end();
for( SizeTypeForMatrix z = 0 ; z < Z ; z++ ){
auto itr1yx = begin1yx;
auto itr2x = begin2x;
T inner_product = 0;
while( itr1yx != end1yx ){
inner_product += ( *itr1yx ) * ( *itr2x )[z];
itr1yx++;
itr2x++;
}
vec.push_back( inner_product );
}
M_prod.push_back( vec );
}
return Matrix<Y,Z,T>( M_prod );
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<Y,X,T> operator*( const T& scalar , const Matrix<Y,X,T>& mat )
{
Matrix<Y,X,T> mat_copy = mat;
mat_copy *= scalar;
return mat_copy;
}
template <SizeTypeForMatrix Y , SizeTypeForMatrix X , typename T>
Matrix<X,Y,T> Transpose( const Matrix<Y,X,T>& mat )
{
const TableTypeForMatrix<T>& M = mat.GetTable();
TableTypeForMatrix<T> M_t{};
auto beginy = M.begin();
for( auto itr1x = beginy->begin() , end1x = beginy->end() ; itr1x != end1x ; itr1x++ ){
M_t.push_back( LineTypeForMatrix<T>() );
}
for( auto itry = beginy , endy = M.end() ; itry != endy ; itry++ ){
auto itryx = itry->begin() , endyx = itry->end();
auto itr_ty = M_t.begin();
while( itryx != endyx ){
itr_ty->push_back( *itryx );
itryx++;
itr_ty++;
}
}
return Matrix<X,Y,T>( M_t );
}
template <SizeTypeForMatrix X , typename T>
T Trace( const Matrix<X,X,T>& mat )
{
int i = 0;
T answer =0;
const TableTypeForMatrix<T>& M = mat.GetTable();
for( auto itry = M.begin() , endy = M.end() ; itry != endy ; itry++ ){
answer += ( *itry )[i];
i++;
}
return answer;
}
// template <typename T , typename UINT> inline Matrix<2,2,T> PowerBinaryMethod( const Matrix<2,2,T>& mat , const UINT& num , const Matrix<2,2,T>& init_dummy , const bool& for_right_multiplication_dummy ) { return PowerBinaryMethod( TwoByTwoMatrix<T>( mat ) , num , TwoByTwoMatrix<T>( init_dummy ) , for_right_multiplication_dummy ).GetMatrix22(); }
// using INT_TYPE_FOR_MOD = int;
using INT_TYPE_FOR_MOD = long long int;
void LazyEvaluationOfModularInverse( const INT_TYPE_FOR_MOD& M , const INT_TYPE_FOR_MOD& n , INT_TYPE_FOR_MOD& m );
void LazyEvaluationOfModularInverse( const INT_TYPE_FOR_MOD& M , const INT_TYPE_FOR_MOD& n , INT_TYPE_FOR_MOD& m )
{
static VLArray<INT_TYPE_FOR_MOD> memory_M{};
// vectorでなくVLArrayだと引数が小さい順に呼び出した時の計算量がO(1)からO(n)に跳ね上がってしまう。
static VLArray<vector<INT_TYPE_FOR_MOD> > memory_inverse{};
auto itr_M = memory_M.begin() , end_M = memory_M.end();
auto itr_inverse = memory_inverse.begin();
vector<INT_TYPE_FOR_MOD>* p_inverse = nullptr;
while( itr_M != end_M && p_inverse == nullptr ){
if( *itr_M == M ){
p_inverse = &( *itr_inverse );
}
itr_M++;
itr_inverse++;
}
if( p_inverse == nullptr ){
memory_M.push_front( M );
memory_inverse.push_front( vector<INT_TYPE_FOR_MOD>() );
p_inverse = &( memory_inverse.front() );
p_inverse->push_back( M );
}
const INT_TYPE_FOR_MOD size = p_inverse->size();
for( INT_TYPE_FOR_MOD i = size ; i <= n ; i++ ){
p_inverse->push_back( 0 );
}
INT_TYPE_FOR_MOD& n_inv = ( *p_inverse )[n];
if( n_inv != 0 ){
m = n_inv;
return;
}
const INT_TYPE_FOR_MOD M_abs = M >= 0 ? M : -M;
const INT_TYPE_FOR_MOD n_sub = M_abs % n;
INT_TYPE_FOR_MOD n_sub_inv = ( *p_inverse )[n_sub];
if( n_sub_inv == 0 ){
LazyEvaluationOfModularInverse( M , n_sub , n_sub_inv );
}
if( n_sub_inv != M ){
n_inv = M_abs - ( ( n_sub_inv * ( M_abs / n ) ) % M_abs );
m = n_inv;
return;
}
for( INT_TYPE_FOR_MOD i = 1 ; i < M_abs ; i++ ){
if( ( n * i ) % M_abs == 1 ){
n_inv = i;
m = n_inv;
return;
}
}
n_inv = M;
m = n_inv;
return;
}
// ここをtempate <typename INT , INT M>などにしてしまうとoperator+などを呼び出す際に型推論に失敗する。整数型を変えたい時はINT_TYPE_FOR_MODの型エイリアスを変更する。
template <INT_TYPE_FOR_MOD M>
class Mod
{
protected:
INT_TYPE_FOR_MOD m_n;
INT_TYPE_FOR_MOD m_inv;
public:
inline Mod() noexcept;
inline Mod( const INT_TYPE_FOR_MOD& n ) noexcept;
inline Mod( const Mod<M>& n ) noexcept;
inline Mod<M>& operator=( const INT_TYPE_FOR_MOD& n ) noexcept;
Mod<M>& operator=( const Mod<M>& n ) noexcept;
Mod<M>& operator+=( const INT_TYPE_FOR_MOD& n ) noexcept;
inline Mod<M>& operator+=( const Mod<M>& n ) noexcept;
inline Mod<M>& operator-=( const INT_TYPE_FOR_MOD& n ) noexcept;
inline Mod<M>& operator-=( const Mod<M>& n ) noexcept;
Mod<M>& operator*=( const INT_TYPE_FOR_MOD& n ) noexcept;
Mod<M>& operator*=( const Mod<M>& n ) noexcept;
// INT_TYPE_FOR_MODでの割り算ではないことに注意
virtual Mod<M>& operator/=( const INT_TYPE_FOR_MOD& n );
virtual Mod<M>& operator/=( const Mod<M>& n );
Mod<M>& operator%=( const INT_TYPE_FOR_MOD& n );
inline Mod<M>& operator%=( const Mod<M>& n );
inline Mod<M> operator-() const noexcept;
// 前置++/--を使うつもりがないので後置++/--と同じものとして定義する
inline Mod<M>& operator++() noexcept;
inline Mod<M>& operator++( int ) noexcept;
inline Mod<M>& operator--() noexcept;
inline Mod<M>& operator--( int ) noexcept;
inline const INT_TYPE_FOR_MOD& Represent() const noexcept;
void Invert() noexcept;
bool CheckInvertible() noexcept;
bool IsSmallerThan( const INT_TYPE_FOR_MOD& n ) const noexcept;
bool IsBiggerThan( const INT_TYPE_FOR_MOD& n ) const noexcept;
};
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator==( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator+( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator+( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator+( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator-( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator-( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator*( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator*( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator*( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept;
template <INT_TYPE_FOR_MOD M> Mod<M> operator/( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 );
template <INT_TYPE_FOR_MOD M> Mod<M> operator/( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 );
template <INT_TYPE_FOR_MOD M> Mod<M> operator/( const Mod<M>& n0 , const Mod<M>& n1 );
template <INT_TYPE_FOR_MOD M> Mod<M> operator%( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 );
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 );
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const Mod<M>& n0 , const Mod<M>& n1 );
template <INT_TYPE_FOR_MOD M> Mod<M> Inverse( const Mod<M>& n );
template <INT_TYPE_FOR_MOD M> Mod<M> Power( const Mod<M>& n , const INT_TYPE_FOR_MOD& p , const string& method = "normal" );
template <> inline Mod<2> Power( const Mod<2>& n , const INT_TYPE_FOR_MOD& p , const string& method );
// M乗が1になるよう定義されていることに注意
template <INT_TYPE_FOR_MOD M> inline Mod<M> Power( const Mod<M>& n , const Mod<M>& p , const string& method = "normal" );
template <> inline Mod<2> Power( const Mod<2>& n , const Mod<2>& p , const string& method );
// ../Power/a_Body.hppにて定義
// template <typename T> inline T Square( const T& t );
// template <> inline Mod<2> Square<Mod<2> >( const Mod<2>& t );
template <INT_TYPE_FOR_MOD M> inline string to_string( const Mod<M>& n ) noexcept;
template<INT_TYPE_FOR_MOD M , class Traits> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const Mod<M>& n );
template <typename INT>
INT Residue( const INT& M , const INT& n ) noexcept;
template <typename INT>
INT Residue( const INT& M , const INT& n ) noexcept
{
if( M == 0 ){
return 0;
}
const INT M_abs = ( M > 0 ? M : -M );
if( n < 0 ){
const INT n_abs = -n;
const INT res = n_abs % M_abs;
return res == 0 ? res : M_abs - res;
}
return n % M_abs;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M>::Mod() noexcept : m_n( 0 ) , m_inv( M ){}
template <INT_TYPE_FOR_MOD M> inline Mod<M>::Mod( const INT_TYPE_FOR_MOD& n ) noexcept : m_n( Residue<INT_TYPE_FOR_MOD>( M , n ) ) , m_inv( 0 ){}
template <INT_TYPE_FOR_MOD M> inline Mod<M>::Mod( const Mod<M>& n ) noexcept : m_n( n.m_n ) , m_inv( 0 ){}
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator=( const INT_TYPE_FOR_MOD& n ) noexcept { return operator=( Mod<M>( n ) ); }
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator=( const Mod<M>& n ) noexcept
{
m_n = n.m_n;
m_inv = n.m_inv;
return *this;
}
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator+=( const INT_TYPE_FOR_MOD& n ) noexcept
{
m_n = Residue<INT_TYPE_FOR_MOD>( M , m_n + n );
m_inv = 0;
return *this;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator+=( const Mod<M>& n ) noexcept { return operator+=( n.m_n ); };
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator-=( const INT_TYPE_FOR_MOD& n ) noexcept { return operator+=( -n ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator-=( const Mod<M>& n ) noexcept { return operator-=( n.m_n ); }
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator*=( const INT_TYPE_FOR_MOD& n ) noexcept
{
m_n = Residue<INT_TYPE_FOR_MOD>( M , m_n * n );
m_inv = 0;
return *this;
}
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator*=( const Mod<M>& n ) noexcept
{
m_n = Residue<INT_TYPE_FOR_MOD>( M , m_n * n.m_n );
if( m_inv == 0 || n.m_inv == 0 ){
m_inv = 0;
} else if( m_inv == M || n.m_inv == M ){
m_inv = M;
} else {
Residue<INT_TYPE_FOR_MOD>( M , m_inv * n.m_inv );
}
return *this;
}
// 仮想関数なのでinline指定しない。
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator/=( const INT_TYPE_FOR_MOD& n )
{
return operator/=( Mod<M>( n ) );
}
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator/=( const Mod<M>& n )
{
return operator*=( Inverse( n ) );
}
template <INT_TYPE_FOR_MOD M>
Mod<M>& Mod<M>::operator%=( const INT_TYPE_FOR_MOD& n )
{
m_n %= Residue<INT_TYPE_FOR_MOD>( M , n );
m_inv = 0;
return *this;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator%=( const Mod<M>& n ) { return operator%=( n.m_n ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> Mod<M>::operator-() const noexcept { return Mod<M>( 0 ).operator-=( *this ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator++() noexcept { return operator+=( 1 ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator++( int ) noexcept { return operator++(); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator--() noexcept { return operator-=( 1 ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M>& Mod<M>::operator--( int ) noexcept { return operator-=(); }
template <INT_TYPE_FOR_MOD M> inline const INT_TYPE_FOR_MOD& Mod<M>::Represent() const noexcept { return m_n; }
template <INT_TYPE_FOR_MOD M>
void Mod<M>::Invert() noexcept
{
if( CheckInvertible() ){
INT_TYPE_FOR_MOD i = m_inv;
m_inv = m_n;
m_n = i;
} else {
// m_nがMになるのはここの処理に限るのでRepresent()の値を参照することで例外処理可能
m_n = M;
m_inv = M;
}
return;
}
template <INT_TYPE_FOR_MOD M>
bool Mod<M>::CheckInvertible() noexcept
{
if( m_inv == 0 ){
LazyEvaluationOfModularInverse( M , m_n , m_inv );
}
return m_inv != M;
}
template <INT_TYPE_FOR_MOD M> inline bool Mod<M>::IsSmallerThan( const INT_TYPE_FOR_MOD& n ) const noexcept { return m_n < Residue<INT_TYPE_FOR_MOD>( M , n ); }
template <INT_TYPE_FOR_MOD M> inline bool Mod<M>::IsBiggerThan( const INT_TYPE_FOR_MOD& n ) const noexcept { return m_n > Residue<INT_TYPE_FOR_MOD>( M , n ); }
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n0 == Mod<M>( n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator==( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return Mod<M>( n0 ) == n0; }
template <INT_TYPE_FOR_MOD M> inline bool operator==( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0.Represent() == n1.Represent(); }
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return !( n0 == n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return !( n0 == n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator!=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return !( n0 == n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n0.IsSmallerThan( n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1.IsBiggerThan( n0 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0.Represent() < n1.Represent(); }
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return !( n1 < n0 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return !( n1 < n0 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator<=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return !( n1 < n0 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n1 < n0; }
template <INT_TYPE_FOR_MOD M> inline bool operator>( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1 < n0; }
template <INT_TYPE_FOR_MOD M> inline bool operator>( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n1 < n0; }
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return !( n0 < n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return !( n0 < n1 ); }
template <INT_TYPE_FOR_MOD M> inline bool operator>=( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return !( n0 < n1 ); }
template <INT_TYPE_FOR_MOD M>
Mod<M> operator+( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept
{
auto n = n0;
n += n1;
return n;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator+( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1 + n0; }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator+( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0 + n1.Represent(); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept { return n0 + ( -n1 ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return Mod<M>( n0 - n1.Represent() ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator-( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept { return n0 - n1.Represent(); }
template <INT_TYPE_FOR_MOD M>
Mod<M> operator*( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) noexcept
{
auto n = n0;
n *= n1;
return n;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator*( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) noexcept { return n1 * n0; }
template <INT_TYPE_FOR_MOD M>
Mod<M> operator*( const Mod<M>& n0 , const Mod<M>& n1 ) noexcept
{
auto n = n0;
n *= n1;
return n;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator/( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 ) { return n0 / Mod<M>( n1 ); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator/( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) { return Mod<M>( n0 ) / n1; }
template <INT_TYPE_FOR_MOD M>
Mod<M> operator/( const Mod<M>& n0 , const Mod<M>& n1 )
{
auto n = n0;
n /= n1;
return n;
}
template <INT_TYPE_FOR_MOD M>
Mod<M> operator%( const Mod<M>& n0 , const INT_TYPE_FOR_MOD& n1 )
{
auto n = n0;
n %= n1;
return n;
}
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const INT_TYPE_FOR_MOD& n0 , const Mod<M>& n1 ) { return Mod<M>( n0 ) % n1.Represent(); }
template <INT_TYPE_FOR_MOD M> inline Mod<M> operator%( const Mod<M>& n0 , const Mod<M>& n1 ) { return n0 % n1.Represent(); }
template <INT_TYPE_FOR_MOD M>
Mod<M> Inverse( const Mod<M>& n )
{
auto n_copy = n;
n_copy.Invert();
return n_copy;
}
template <INT_TYPE_FOR_MOD M>
Mod<M> Power( const Mod<M>& n , const INT_TYPE_FOR_MOD& p , const string& method )
{
if( p >= 0 ){
return Power<Mod<M>,INT_TYPE_FOR_MOD>( n , p , 1 , true , true , method );
}
return Inverse( Power<M>( n , -p , method ) );
}
template <> inline Mod<2> Power( const Mod<2>& n , const INT_TYPE_FOR_MOD& p , const string& method ) { return p == 0 ? 1 : n; }
template <INT_TYPE_FOR_MOD M> inline Mod<M> Power( const Mod<M>& n , const Mod<M>& p , const string& method ) { return Power<Mod<M>,INT_TYPE_FOR_MOD>( n , p.Represent() , method ); }
template <> inline Mod<2> Power( const Mod<2>& n , const Mod<2>& p , const string& method ) { return p == 0 ? 1 : n; }
// template <> inline Mod<2> Square<Mod<2> >( const Mod<2>& t ) { return t; }
template <INT_TYPE_FOR_MOD M> inline string to_string( const Mod<M>& n ) noexcept { return to_string( n.Represent() ) + " + MZ"; }
template<INT_TYPE_FOR_MOD M , class Traits> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const Mod<M>& n ) { return os << n.Represent(); }
int main()
{
UNTIE;
CEXPR( ll , bound_N , 1000000000000000000 );
CIN_ASSERT( N , 2 , bound_N );
// A[2] = 1;
// A[n] = 1 + sum( int i = 2 ; i <= n - 2 ; i++ ) A[i];
// A[3] = 1;
// A[4] = 2;
// A[5] = 3;
// A[6] = 5;
using MOD = Mod<998244353>;
Matrix<2,1,MOD> v
{
1 ,
1
};
Matrix<2,2,MOD> T
{
1 , 1 ,
1 , 0
};
Matrix<2,2,MOD> power_T = Matrix<2,2,MOD>::Unit();
Matrix<2,2,MOD> power{ T };
N -= 2;
while( N != 0 ){
if( N % 2 == 1 ){
power_T = power_T * power;
}
power = power * power;
N /= 2;
}
v = power_T * v;
const TableTypeForMatrix<MOD>& v_vec = v.GetTable();
RETURN( ( v_vec[0][0] + v_vec[1][0] - 1 ).Represent() );
}