結果

問題 No.2157 崖
ユーザー 👑 p-adicp-adic
提出日時 2022-12-09 23:27:07
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,050 ms / 6,000 ms
コード長 7,852 bytes
コンパイル時間 2,339 ms
コンパイル使用メモリ 204,312 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-14 22:55:32
合計ジャッジ時間 11,925 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 2 ms
6,816 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 2 ms
6,816 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 2 ms
6,816 KB
testcase_09 AC 2 ms
6,816 KB
testcase_10 AC 2 ms
6,816 KB
testcase_11 AC 2 ms
6,820 KB
testcase_12 AC 2 ms
6,820 KB
testcase_13 AC 785 ms
6,820 KB
testcase_14 AC 755 ms
6,820 KB
testcase_15 AC 584 ms
6,816 KB
testcase_16 AC 598 ms
6,816 KB
testcase_17 AC 620 ms
6,816 KB
testcase_18 AC 626 ms
6,816 KB
testcase_19 AC 938 ms
6,816 KB
testcase_20 AC 1,050 ms
6,816 KB
testcase_21 AC 993 ms
6,816 KB
testcase_22 AC 621 ms
6,816 KB
testcase_23 AC 2 ms
6,816 KB
testcase_24 AC 2 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// #pragma GCC optimize ( "O3" )
// #pragma GCC target ( "avx" )
#include <bits/stdc++.h>
using namespace std;

using uint = unsigned int;
using ll = long long;

#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) 
#define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE 
#define CIN( LL , A ) LL A; cin >> A 
#define ASSERT( A , MIN , MAX ) assert( MIN <= A && A <= MAX ) 
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX ) 
#define GETLINE( A ) string A; getline( cin , A ) 
#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR ) 
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) 
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) 
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- ) 
#define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ ) 
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES ) 
#define QUIT return 0 
#define COUT( ANSWER ) cout << ( ANSWER ) << "\n"; 
#define RETURN( ANSWER ) COUT( ANSWER ); QUIT 
#define DOUBLE( PRECISION , ANSWER ) cout << fixed << setprecision( PRECISION ) << ( ANSWER ) << "\n"; QUIT 

#define POWER( ANSWER , ARGUMENT , EXPONENT )				\
  TYPE_OF( ARGUMENT ) ANSWER{ 1 };					\
  {									\
    TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT );	\
    TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT );	\
    while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){			\
      if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){			\
	ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER;			\
      }									\
      ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER;	\
      EXPONENT_FOR_SQUARE_FOR_POWER /= 2;				\
    }									\
  }									\


#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO )		\
  TYPE_OF( ARGUMENT ) ANSWER{ 1 };					\
  {									\
    TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ARGUMENT ) % MODULO ) % MODULO; \
    TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT );	\
    while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){			\
      if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){			\
	ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO;	\
      }									\
      ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \
      EXPONENT_FOR_SQUARE_FOR_POWER /= 2;				\
    }									\
  }									\


#define FACTORIAL_MOD( ANSWER , ANSWER_INV , MAX_I , LENGTH , MODULO )	\
  ll ANSWER[LENGTH];							\
  ll ANSWER_INV[LENGTH];						\
  {									\
    ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1;				\
    ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL;			\
    FOREQ( i , 1 , MAX_I ){						\
      ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= MODULO; \
    }									\
    POWER_MOD( FACTORIAL_MAX_INV , ANSWER[MAX_I] , MODULO - 2 , MODULO ); \
    ANSWER_INV[MAX_I] = FACTORIAL_MAX_INV;				\
    FOREQINV( i , MAX_I - 1 , 0 ){					\
      ANSWER_INV[i] = ( FACTORIAL_MAX_INV *= i + 1 ) %= MODULO;		\
    }									\
  }									\
									\


// 通常の二分探索
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  ll ANSWER = MAXIMUM;							\
  {									\
    ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM;				\
    ll VARIABLE_FOR_BINARY_SEARCH_U = ANSWER;				\
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
    if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
      VARIABLE_FOR_BINARY_SEARCH_L = ANSWER;				\
    } else {								\
      ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
    }									\
    while( VARIABLE_FOR_BINARY_SEARCH_L != ANSWER ){			\
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
	VARIABLE_FOR_BINARY_SEARCH_L = ANSWER;				\
	break;								\
      } else {								\
	if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){		\
	  VARIABLE_FOR_BINARY_SEARCH_L = ANSWER;			\
	} else {							\
	  VARIABLE_FOR_BINARY_SEARCH_U = ANSWER;			\
	}								\
	ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
      }									\
    }									\
  }									\
									\


// 二進法の二分探索
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  ll ANSWER = MINIMUM;							\
  {									\
    ll VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 = 1;			\
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( MAXIMUM ) - ANSWER; \
    while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 <= VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ){ \
      VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 *= 2;			\
    }									\
    VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2;			\
    ll VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER;		\
    while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 != 0 ){		\
      ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 + VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2; \
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
	VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER;		\
	break;								\
      } else if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){	\
	VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER;		\
      }									\
      VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2;			\
    }									\
    ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2;			\
  }									\
									\


template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : - a; }
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - ( - a - 1 ) % p - 1; }

class Dopt
{
public:
  int m_D;
  int m_opt;
  inline Dopt( int D = 0 , int opt = 0 ) : m_D( D ) , m_opt( opt ) {}
};

inline bool operator<( const Dopt& dopt0 , const Dopt& dopt1 ) { return dopt0.m_D < dopt1.m_D; }


int main()
{
  UNTIE;
  CEXPR( int , bound_N , 1500 );
  CIN_ASSERT( N , 1 , bound_N );
  CEXPR( int , bound_M , 1500 );
  CIN_ASSERT( M , 1 , bound_M );
  CEXPR( int , bound_Dij , 1000000000 );
  Dopt dopt[2][bound_M];
  int num[2] = { M , 0 };
  int i_prev = 1;
  int i_curr = 0;
  {
    Dopt ( &dopt_curr )[bound_M] = dopt[i_curr];
    int& num_curr = num[i_curr];
    FOR( j , 0 , M ){
      CIN_ASSERT( Dij , 1 , bound_Dij );
      dopt_curr[j] = Dopt( Dij , 0 );
    }
    sort( dopt_curr , dopt_curr + num_curr );
    swap( i_prev , i_curr );
  }
  N--;
  int opt_curr;
  REPEAT( N ){
    Dopt ( &dopt_prev )[bound_M] = dopt[i_prev];
    Dopt ( &dopt_curr )[bound_M] = dopt[i_curr];
    int num_prev = num[i_prev];
    int& num_curr = num[i_curr];
    num_curr = 0;
    FOR( j , 0 , M ){
      CIN_ASSERT( Dij , 1 , bound_Dij );
      if( dopt_prev[0].m_D <= Dij ){
	Dopt& dopt_curr_j = dopt_curr[num_curr];
	dopt_curr_j.m_D = Dij;
	dopt_curr_j.m_opt = bound_Dij;
	FOR( j_prev , 0 , num_prev ){
	  Dopt& dopt_prev_j_prev = dopt_prev[j_prev];
	  if( dopt_prev_j_prev.m_D > Dij ){
	    break;
	  }
	  opt_curr = max( Dij - dopt_prev_j_prev.m_D , dopt_prev_j_prev.m_opt );
	  if( dopt_curr_j.m_opt > opt_curr ){
	    dopt_curr_j.m_opt = opt_curr;
	  }
	}
	num_curr++;
      }
    }
    if( num_curr == 0 ){
      RETURN( -1 );
    }
    sort( dopt_curr , dopt_curr + num_curr );
    swap( i_prev , i_curr );
  }
  int num_last = num[i_prev];
  Dopt ( &dopt_last )[bound_M] = dopt[i_prev];
  int answer = dopt_last[0].m_opt;
  FOR( j , 0 , num_last ){
    if( answer > dopt_last[j].m_opt ){
      answer = dopt_last[j].m_opt;
    }
  }
  RETURN( answer );
}
0