結果
問題 | No.2156 ぞい文字列 |
ユーザー | 👑 Kazun |
提出日時 | 2022-12-10 01:14:27 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 50 ms / 2,000 ms |
コード長 | 8,206 bytes |
コンパイル時間 | 221 ms |
コンパイル使用メモリ | 82,176 KB |
実行使用メモリ | 55,808 KB |
最終ジャッジ日時 | 2024-10-14 23:25:26 |
合計ジャッジ時間 | 1,849 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 47 ms
55,808 KB |
testcase_01 | AC | 49 ms
55,424 KB |
testcase_02 | AC | 47 ms
55,424 KB |
testcase_03 | AC | 47 ms
55,424 KB |
testcase_04 | AC | 48 ms
55,552 KB |
testcase_05 | AC | 46 ms
55,680 KB |
testcase_06 | AC | 46 ms
55,680 KB |
testcase_07 | AC | 45 ms
55,680 KB |
testcase_08 | AC | 50 ms
55,552 KB |
testcase_09 | AC | 46 ms
55,168 KB |
testcase_10 | AC | 44 ms
55,296 KB |
testcase_11 | AC | 47 ms
55,040 KB |
testcase_12 | AC | 45 ms
55,168 KB |
testcase_13 | AC | 46 ms
55,424 KB |
testcase_14 | AC | 45 ms
55,040 KB |
testcase_15 | AC | 44 ms
55,168 KB |
testcase_16 | AC | 46 ms
55,040 KB |
testcase_17 | AC | 47 ms
55,168 KB |
testcase_18 | AC | 45 ms
55,552 KB |
testcase_19 | AC | 47 ms
55,808 KB |
ソースコード
""" Note DP[1,z]=1, DP[1,i]=0 DP[k+1,z]=DP[k,z]+DP[k,i] DP[k+1,i]=DP[k,z] """ from copy import deepcopy class Modulo_Matrix(): __slots__=("ele","row","col","size") #入力 def __init__(self,M): """ 行列 M の定義 M: 行列 ※ Mod: 法はグローバル変数から指定 """ self.ele=[[x%Mod for x in X] for X in M] R=len(M) if R!=0: C=len(M[0]) else: C=0 self.row=R self.col=C self.size=(R,C) #出力 def __str__(self): return "["+"\n".join(map(str,self.ele))+"]" def __repr__(self): return str(self) #+,- def __pos__(self): return self def __neg__(self): return self.__scale__(-1) #加法 def __add__(self,other): M=self.ele; N=other.ele L=[[0]*self.col for _ in range(self.row)] for i in range(self.row): Li,Mi,Ni=L[i],M[i],N[i] for j in range(self.col): Li[j]=Mi[j]+Ni[j] return Modulo_Matrix(L) def __iadd__(self,other): M=self.ele; N=other.ele for i in range(self.row): Mi,Ni=M[i],N[i] for j in range(self.col): Mi[j]+=Ni[j] Mi[j]%=Mod return self #減法 def __sub__(self,other): M=self.ele; N=other.ele L=[[0]*self.col for _ in range(self.row)] for i in range(self.row): Li,Mi,Ni=L[i],M[i],N[i] for j in range(self.col): Li[j]=Mi[j]-Ni[j] return Modulo_Matrix(L) def __isub__(self,other): M=self.ele; N=other.ele for i in range(self.row): Mi,Ni=M[i],N[i] for j in range(self.col): Mi[j]-=Ni[j] Mi[j]%=Mod return self #乗法 def __mul__(self,other): if isinstance(other,Modulo_Matrix): assert self.col==other.row, "左側の列と右側の行が一致しません.({},{})".format(self.size,other.size) M=self.ele; N=other.ele E=[[0]*other.col for _ in range(self.row)] for i in range(self.row): Ei,Mi=E[i],M[i] for k in range(self.col): m_ik,Nk=Mi[k],N[k] for j in range(other.col): Ei[j]+=m_ik*Nk[j] Ei[j]%=Mod return Modulo_Matrix(E) elif isinstance(other,int): return self.__scale__(other) def __rmul__(self,other): if isinstance(other,int): return self.__scale__(other) def inverse(self): assert self.row==self.col,"正方行列ではありません." M=self N=M.row R=[[1 if i==j else 0 for j in range(N)] for i in range(N)] T=deepcopy(M.ele) for j in range(N): if T[j][j]==0: for i in range(j+1,N): if T[i][j]: break else: assert 0, "正則行列ではありません" T[j],T[i]=T[i],T[j] R[j],R[i]=R[i],R[j] Tj,Rj=T[j],R[j] inv=pow(Tj[j],Mod-2,Mod) for k in range(N): Tj[k]*=inv; Tj[k]%=Mod Rj[k]*=inv; Rj[k]%=Mod for i in range(N): if i==j: continue c=T[i][j] Ti,Ri=T[i],R[i] for k in range(N): Ti[k]-=Tj[k]*c; Ti[k]%=Mod Ri[k]-=Rj[k]*c; Ri[k]%=Mod return Modulo_Matrix(R) #スカラー倍 def __scale__(self,r): M=self.ele r%=Mod L=[[(r*M[i][j])%Mod for j in range(self.col)] for i in range(self.row)] return Modulo_Matrix(L) #累乗 def __pow__(self,n): assert self.row==self.col, "正方行列ではありません." r=self.col def __mat_mul(A,B): E=[[0]*r for _ in range(r)] for i in range(r): a=A[i]; e=E[i] for k in range(r): b=B[k] for j in range(r): e[j]+=a[k]*b[j] e[j]%=Mod return E X=deepcopy(self.ele) E=[[1 if i==j else 0 for j in range(r)] for i in range(r)] sgn=1 if n>=0 else -1 n=abs(n) while True: if n&1: E=__mat_mul(E,X) n>>=1 if n: X=__mat_mul(X,X) else: break if sgn==1: return Modulo_Matrix(E) else: return Modulo_Matrix(E).inverse() #等号 def __eq__(self,other): return self.ele==other.ele #不等号 def __neq__(self,other): return not(self==other) #転置 def transpose(self): return Modulo_Matrix(list(map(list,zip(*self.ele)))) #行基本変形 def row_reduce(self): M=self (R,C)=M.size T=[] for i in range(R): U=[] for j in range(C): U.append(M.ele[i][j]) T.append(U) I=0 for J in range(C): if T[I][J]==0: for i in range(I+1,R): if T[i][J]!=0: T[i],T[I]=T[I],T[i] break if T[I][J]!=0: u=T[I][J] u_inv=pow(u,Mod-2,Mod) for j in range(C): T[I][j]*=u_inv T[I][j]%=Mod for i in range(R): if i!=I: v=T[i][J] for j in range(C): T[i][j]-=v*T[I][j] T[i][j]%=Mod I+=1 if I==R: break return Modulo_Matrix(T) #列基本変形 def column_reduce(self): M=self (R,C)=M.size T=[] for i in range(R): U=[] for j in range(C): U.append(M.ele[i][j]) T.append(U) J=0 for I in range(R): if T[I][J]==0: for j in range(J+1,C): if T[I][j]!=0: for k in range(R): T[k][j],T[k][J]=T[k][J],T[k][j] break if T[I][J]!=0: u=T[I][J] u_inv=pow(u,Mod-2,Mod) for i in range(R): T[i][J]*=u_inv T[i][J]%=Mod for j in range(C): if j!=J: v=T[I][j] for i in range(R): T[i][j]-=v*T[i][J] T[i][j]%=Mod J+=1 if J==C: break return Modulo_Matrix(T) #行列の階数 def rank(self): M=self.row_reduce() (R,C)=M.size T=M.ele rnk=0 for i in range(R): f=False for j in range(C): if T[i][j]!=0: f=True break if f: rnk+=1 else: break return rnk #行の結合 def row_union(self,other): return Modulo_Matrix(self.ele+other.ele) #列の結合 def column_union(self,other): E=[] for i in range(self.row): E.append(self.ele[i]+other.ele[i]) return Modulo_Matrix(E) def __getitem__(self,index): if isinstance(index, int): return self.ele[index] else: return self.ele[index[0]][index[1]] def __setitem__(self,index,val): assert isinstance(index,tuple) and len(index)==2 self.ele[index[0]][index[1]]=val def solve(): N=int(input()) global Mod; Mod=998244353 A=Modulo_Matrix([[1,1],[1,0]]) B=pow(A,N-1) return (B[0,0]+B[1,0]-1)%Mod #================================================== print(solve())