結果
問題 | No.2160 みたりのDominator |
ユーザー | 👑 Nachia |
提出日時 | 2022-12-10 16:35:56 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 127 ms / 2,000 ms |
コード長 | 9,565 bytes |
コンパイル時間 | 1,648 ms |
コンパイル使用メモリ | 97,240 KB |
実行使用メモリ | 29,928 KB |
最終ジャッジ日時 | 2024-10-14 23:46:08 |
合計ジャッジ時間 | 9,588 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 46 ms
20,676 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | AC | 2 ms
5,248 KB |
testcase_19 | AC | 2 ms
5,248 KB |
testcase_20 | AC | 2 ms
5,248 KB |
testcase_21 | AC | 2 ms
5,248 KB |
testcase_22 | AC | 2 ms
5,248 KB |
testcase_23 | AC | 2 ms
5,248 KB |
testcase_24 | AC | 2 ms
5,248 KB |
testcase_25 | AC | 2 ms
5,248 KB |
testcase_26 | AC | 2 ms
5,248 KB |
testcase_27 | AC | 2 ms
5,248 KB |
testcase_28 | AC | 2 ms
5,248 KB |
testcase_29 | AC | 2 ms
5,248 KB |
testcase_30 | AC | 2 ms
5,248 KB |
testcase_31 | AC | 2 ms
5,248 KB |
testcase_32 | AC | 2 ms
5,248 KB |
testcase_33 | AC | 2 ms
5,248 KB |
testcase_34 | AC | 46 ms
20,800 KB |
testcase_35 | AC | 2 ms
5,248 KB |
testcase_36 | AC | 2 ms
5,248 KB |
testcase_37 | AC | 2 ms
5,248 KB |
testcase_38 | AC | 2 ms
5,248 KB |
testcase_39 | AC | 2 ms
5,248 KB |
testcase_40 | AC | 56 ms
20,456 KB |
testcase_41 | AC | 51 ms
20,404 KB |
testcase_42 | AC | 34 ms
13,160 KB |
testcase_43 | AC | 46 ms
16,996 KB |
testcase_44 | AC | 54 ms
19,904 KB |
testcase_45 | AC | 50 ms
17,612 KB |
testcase_46 | AC | 43 ms
15,964 KB |
testcase_47 | AC | 24 ms
10,440 KB |
testcase_48 | AC | 32 ms
12,480 KB |
testcase_49 | AC | 39 ms
14,948 KB |
testcase_50 | AC | 36 ms
15,076 KB |
testcase_51 | AC | 36 ms
14,112 KB |
testcase_52 | AC | 49 ms
18,520 KB |
testcase_53 | AC | 52 ms
19,936 KB |
testcase_54 | AC | 33 ms
12,780 KB |
testcase_55 | AC | 117 ms
26,836 KB |
testcase_56 | AC | 105 ms
25,224 KB |
testcase_57 | AC | 104 ms
25,640 KB |
testcase_58 | AC | 117 ms
28,896 KB |
testcase_59 | AC | 108 ms
26,596 KB |
testcase_60 | AC | 107 ms
29,304 KB |
testcase_61 | AC | 111 ms
26,216 KB |
testcase_62 | AC | 127 ms
29,928 KB |
testcase_63 | AC | 116 ms
27,128 KB |
testcase_64 | AC | 100 ms
26,464 KB |
testcase_65 | AC | 54 ms
15,828 KB |
testcase_66 | AC | 63 ms
16,388 KB |
testcase_67 | AC | 64 ms
16,864 KB |
testcase_68 | AC | 114 ms
27,500 KB |
testcase_69 | AC | 84 ms
21,116 KB |
testcase_70 | AC | 113 ms
27,504 KB |
testcase_71 | AC | 44 ms
13,712 KB |
testcase_72 | AC | 82 ms
21,956 KB |
testcase_73 | AC | 114 ms
26,764 KB |
testcase_74 | AC | 109 ms
25,832 KB |
testcase_75 | AC | 19 ms
10,260 KB |
testcase_76 | AC | 15 ms
8,804 KB |
testcase_77 | AC | 62 ms
19,304 KB |
testcase_78 | AC | 77 ms
21,292 KB |
testcase_79 | AC | 12 ms
7,032 KB |
testcase_80 | AC | 13 ms
7,836 KB |
testcase_81 | AC | 23 ms
11,888 KB |
testcase_82 | AC | 26 ms
13,160 KB |
testcase_83 | AC | 30 ms
13,296 KB |
61_evil_bias_nocross_01.txt | AC | 54 ms
20,588 KB |
61_evil_bias_nocross_02.txt | AC | 52 ms
20,276 KB |
61_evil_bias_nocross_03.txt | AC | 33 ms
13,288 KB |
61_evil_bias_nocross_04.txt | AC | 43 ms
16,876 KB |
61_evil_bias_nocross_05.txt | AC | 52 ms
19,908 KB |
61_evil_bias_nocross_06.txt | AC | 53 ms
20,312 KB |
61_evil_bias_nocross_07.txt | AC | 36 ms
14,100 KB |
61_evil_bias_nocross_08.txt | AC | 47 ms
18,540 KB |
61_evil_bias_nocross_09.txt | AC | 56 ms
19,812 KB |
61_evil_bias_nocross_10.txt | AC | 34 ms
12,784 KB |
61_evil_bias_nocross_11.txt | AC | 41 ms
16,012 KB |
61_evil_bias_nocross_12.txt | AC | 49 ms
19,144 KB |
ソースコード
#line 1 "Main.cpp" #include <iostream> #include <string> #include <vector> #include <algorithm> #include <utility> #line 4 "nachia\\graph\\graph.hpp" #include <cassert> #line 5 "nachia\\array\\csr-array.hpp" namespace nachia{ template<class Elem> class CsrArray{ public: struct ListRange{ using iterator = typename std::vector<Elem>::iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } Elem& operator[](int i) const { return begi[i]; } }; struct ConstListRange{ using iterator = typename std::vector<Elem>::const_iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } const Elem& operator[](int i) const { return begi[i]; } }; private: int m_n; std::vector<Elem> m_list; std::vector<int> m_pos; public: CsrArray() : m_n(0), m_list(), m_pos() {} static CsrArray Construct(int n, const std::vector<std::pair<int, Elem>>& items){ CsrArray res; res.m_n = n; std::vector<int> buf(n+1, 0); for(auto& [u,v] : items){ ++buf[u]; } for(int i=1; i<=n; i++) buf[i] += buf[i-1]; res.m_list.resize(buf[n]); for(int i=(int)items.size()-1; i>=0; i--){ res.m_list[--buf[items[i].first]] = items[i].second; } res.m_pos = std::move(buf); return res; } static CsrArray FromRaw(std::vector<Elem> list, std::vector<int> pos){ CsrArray res; res.m_n = pos.size() - 1; res.m_list = std::move(list); res.m_pos = std::move(pos); return res; } ListRange operator[](int u) { return ListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } ConstListRange operator[](int u) const { return ConstListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } int size() const { return m_n; } int fullSize() const { return (int)m_list.size(); } }; } // namespace nachia #line 6 "nachia\\graph\\graph.hpp" namespace nachia{ struct Graph { public: struct Edge{ int from, to; void reverse(){ std::swap(from, to); } }; using Base = std::vector<std::pair<int, int>>; Graph(int n = 0, bool undirected = false) : m_n(n), m_e(), m_isUndir(undirected) {} Graph(int n, const std::vector<std::pair<int, int>>& edges, bool undirected = false) : m_n(n), m_isUndir(undirected){ m_e.resize(edges.size()); for(std::size_t i=0; i<edges.size(); i++) m_e[i] = { edges[i].first, edges[i].second }; } Graph(int n, const std::vector<Edge>& edges, bool undirected = false) : m_n(n), m_e(edges), m_isUndir(undirected) {} Graph(int n, std::vector<Edge>&& edges, bool undirected = false) : m_n(n), m_e(edges), m_isUndir(undirected) {} int numVertices() const noexcept { return m_n; } int numEdges() const noexcept { return int(m_e.size()); } int addEdge(int from, int to){ m_e.push_back({ from, to }); return numEdges() - 1; } Edge& operator[](int ei) noexcept { return m_e[ei]; } const Edge& operator[](int ei) const noexcept { return m_e[ei]; } Edge& at(int ei) { return m_e.at(ei); } const Edge& at(int ei) const { return m_e.at(ei); } auto begin(){ return m_e.begin(); } auto end(){ return m_e.end(); } auto begin() const { return m_e.begin(); } auto end() const { return m_e.end(); } bool isUndirected() const noexcept { return m_isUndir; } void reverseEdges() noexcept { for(auto& e : m_e) e.reverse(); } void contract(int newV, const std::vector<int>& mapping){ assert(numVertices() == int(mapping.size())); for(int i=0; i<numVertices(); i++) assert(0 <= mapping[i] && mapping[i] < newV); for(auto& e : m_e){ e.from = mapping[e.from]; e.to = mapping[e.to]; } } std::vector<Graph> induce(int num, const std::vector<int>& mapping) const { int n = numVertices(); assert(n == int(mapping.size())); for(int i=0; i<n; i++) assert(-1 <= mapping[i] && mapping[i] < num); std::vector<int> indexV(n), newV(num); for(int i=0; i<n; i++) if(mapping[i] >= 0) indexV[i] = ++newV[mapping[i]]; std::vector<Graph> res; res.reserve(num); for(int i=0; i<num; i++) res.emplace_back(newV[i], isUndirected()); for(auto e : m_e) if(mapping[e.from] == mapping[e.to] && mapping[e.to] >= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]); return res; } CsrArray<int> getEdgeIndexArray(bool undirected) const { std::vector<std::pair<int, int>> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(int i=0; i<numEdges(); i++){ auto e = operator[](i); src.emplace_back(e.from, i); if(undirected) src.emplace_back(e.to, i); } return CsrArray<int>::Construct(numVertices(), src); } CsrArray<int> getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); } CsrArray<int> getAdjacencyArray(bool undirected) const { std::vector<std::pair<int, int>> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(auto e : m_e){ src.emplace_back(e.from, e.to); if(undirected) src.emplace_back(e.to, e.from); } return CsrArray<int>::Construct(numVertices(), src); } CsrArray<int> getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); } private: int m_n; std::vector<Edge> m_e; bool m_isUndir; }; } // namespace nachia #line 4 "nachia\\graph\\strongly-connected-components.hpp" namespace nachia{ struct SCC{ int m_n; CsrArray<int> induce; int componentNum; SCC() : m_n(0), induce(), componentNum(0) {} SCC(Graph E) { int n = E.numVertices(); m_n = n; std::vector<int> O(n); { auto adj = E.getAdjacencyArray(); int Oi = n; std::vector<int> P(n, -1), EI(n, 0); for(int s=0; s<n; s++) if(P[s] == -1){ P[s] = -2; int p = s; while(p >= 0){ if(EI[p] == adj[p].size()){ O[--Oi] = p; p = P[p]; continue; } int q = adj[p][EI[p]++]; if(P[q] == -1){ P[q] = p; p = q; } } } } E.reverseEdges(); auto adj = E.getAdjacencyArray(); std::vector<int> sep = {0}, csr(n), vis(n,0); int p1 = 0, p2 = 0; for(int s : O) if(!vis[s]){ csr[p2++] = s; vis[s] = 1; for(; p1<p2; p1++){ int v = csr[p1]; for(auto e : adj[v]) if(!vis[e]){ vis[e] = 1; csr[p2++] = e; } } sep.push_back(p2); } induce = CsrArray<int>::FromRaw(std::move(csr), std::move(sep)); componentNum = induce.size(); } int numComponent() const { return componentNum; } const CsrArray<int>& getCsr() const { return induce; } }; } // namespace nachia #line 7 "Main.cpp" using namespace std; using i64 = long long; #define rep(i,n) for(int i=0; i<(int)(n); i++) int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); // グラフの入力・整形 int N1, N2, N3, M; cin >> N1 >> N2 >> N3 >> M; int s = N1+N2+N3, t = N1+N2+N3+1, N = N1+N2+N3+2; nachia::Graph graph(N, false); if(N1 != 0){ graph.addEdge(s, 0); for(int i=0; i<N1-1; i++) graph.addEdge(i,i+1); graph.addEdge(N1-1, t); } else { graph.addEdge(s, t); } if(N2 != 0){ graph.addEdge(s, N1); for(int i=N1; i<N1+N2-1; i++) graph.addEdge(i,i+1); graph.addEdge(N1+N2-1, t); } else { graph.addEdge(s, t); } if(N3 != 0){ graph.addEdge(s, N1+N2); for(int i=N1+N2; i<N1+N2+N3-1; i++) graph.addEdge(i,i+1); graph.addEdge(N1+N2+N3-1, t); } else { graph.addEdge(s, t); } rep(i,M){ int u, v; cin >> u >> v; u--; v--; graph.addEdge(u, v); graph.addEdge(v, u); } // 強連結成分分解 auto scc = nachia::SCC(graph).getCsr(); vector<int> sccid(N); rep(i,scc.size()) for(int j : scc[i]) sccid[j] = i; // 強連結成分の縮約 N = scc.size(); s = sccid[s]; t = sccid[t]; if(s == t){ cout << "0\n"; return 0; } nachia::Graph graph2(N, false); for(auto e : graph) if(sccid[e.from] != sccid[e.to]) graph2.addEdge(sccid[e.from], sccid[e.to]); // 次数 1,1 の頂点を検出 vector<int> SkipV(N, 0); auto adj_graph2u = graph2.getAdjacencyArray(true); rep(i,N) if(adj_graph2u[i].size() == 2) SkipV[i] = -1; int N4 = 0; for(int& i : SkipV) if(i != -1) i = N4++; // 次数 1,1 の頂点を飛ばしたグラフを作成 nachia::Graph graph3(N4, false); std::vector<i64> W; auto adj_graph2d = graph2.getAdjacencyArray(false); rep(v, N) if(SkipV[v] != -1) for(int w : adj_graph2d[v]){ int weight = 1; while(SkipV[w] == -1){ w = adj_graph2d[w][0]; weight++; } graph3.addEdge(SkipV[v], SkipV[w]); W.push_back(weight); } // 数え上げ std::vector<i64> partAns(N4-1, 1); rep(e,graph3.numEdges()) for(int i=graph3[e].from; i<graph3[e].to; i++) partAns[i] *= W[e]; i64 ans = 0; for(auto w : partAns) ans += w; cout << ans << '\n'; return 0; }