結果
問題 | No.2166 Paint and Fill |
ユーザー | 👑 Nachia |
提出日時 | 2022-12-11 23:26:30 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3,682 ms / 10,000 ms |
コード長 | 46,145 bytes |
コンパイル時間 | 3,270 ms |
コンパイル使用メモリ | 145,728 KB |
実行使用メモリ | 285,100 KB |
最終ジャッジ日時 | 2024-11-17 08:03:34 |
合計ジャッジ時間 | 82,480 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1,156 ms
140,888 KB |
testcase_01 | AC | 325 ms
8,176 KB |
testcase_02 | AC | 1,942 ms
273,128 KB |
testcase_03 | AC | 1,169 ms
140,936 KB |
testcase_04 | AC | 1,171 ms
140,944 KB |
testcase_05 | AC | 1,192 ms
140,936 KB |
testcase_06 | AC | 1,178 ms
140,940 KB |
testcase_07 | AC | 1,172 ms
140,944 KB |
testcase_08 | AC | 1,494 ms
141,308 KB |
testcase_09 | AC | 1,490 ms
141,320 KB |
testcase_10 | AC | 1,499 ms
141,296 KB |
testcase_11 | AC | 1,499 ms
141,280 KB |
testcase_12 | AC | 1,489 ms
141,224 KB |
testcase_13 | AC | 3,666 ms
284,964 KB |
testcase_14 | AC | 3,650 ms
284,884 KB |
testcase_15 | AC | 3,640 ms
284,908 KB |
testcase_16 | AC | 3,634 ms
284,932 KB |
testcase_17 | AC | 3,682 ms
285,100 KB |
testcase_18 | AC | 2,971 ms
280,208 KB |
testcase_19 | AC | 2,976 ms
280,164 KB |
testcase_20 | AC | 3,258 ms
280,740 KB |
testcase_21 | AC | 3,153 ms
280,016 KB |
testcase_22 | AC | 2,652 ms
278,060 KB |
testcase_23 | AC | 2,784 ms
278,844 KB |
testcase_24 | AC | 2,818 ms
278,864 KB |
testcase_25 | AC | 2 ms
6,820 KB |
testcase_26 | AC | 2 ms
6,816 KB |
testcase_27 | AC | 1,134 ms
8,176 KB |
testcase_28 | AC | 1,530 ms
8,176 KB |
testcase_29 | AC | 1,359 ms
8,172 KB |
testcase_30 | AC | 1,540 ms
8,176 KB |
testcase_31 | AC | 1,541 ms
8,304 KB |
testcase_32 | AC | 1,538 ms
8,304 KB |
testcase_33 | AC | 1,543 ms
8,176 KB |
testcase_34 | AC | 1,541 ms
8,172 KB |
testcase_35 | AC | 1,543 ms
8,308 KB |
testcase_36 | AC | 1,545 ms
8,176 KB |
testcase_37 | AC | 1,544 ms
8,304 KB |
testcase_38 | AC | 1,542 ms
8,176 KB |
testcase_39 | AC | 1,550 ms
8,172 KB |
ソースコード
#line 2 "nachia\\fps\\formal-power-series-struct.hpp" #include <vector> #include <algorithm> #include <string> #include <cassert> #include <iostream> #line 3 "nachia\\math-modulo\\modulo-primitive-root.hpp" #include <utility> namespace nachia{ template<unsigned int MOD> struct PrimitiveRoot{ static constexpr unsigned long long powm(unsigned long long a, unsigned long long i) { unsigned long long res = 1, aa = a; while(i){ if(i & 1) res = res * aa % MOD; aa = aa * aa % MOD; i /= 2; } return res; } static constexpr bool ExamineVal(unsigned int g){ unsigned int t = MOD - 1; for(unsigned long long d=2; d*d<=t; d++) if(t % d == 0){ if(powm(g, (MOD - 1) / d) == 1) return false; while(t % d == 0) t /= d; } if(t != 1) if(powm(g, (MOD - 1) / t) == 1) return false; return true; } static constexpr unsigned int GetVal(){ for(unsigned int x=2; x<MOD; x++) if(ExamineVal(x)) return x; return 0; } static const unsigned int val = GetVal(); }; } #line 3 "nachia\\math\\combination.hpp" namespace nachia{ template<class Modint> class Comb{ private: std::vector<Modint> F; std::vector<Modint> iF; public: void extend(int newN){ int prevN = (int)F.size() - 1; if(prevN >= newN) return; F.resize(newN+1); iF.resize(newN+1); for(int i=prevN+1; i<=newN; i++) F[i] = F[i-1] * Modint::raw(i); iF[newN] = F[newN].inv(); for(int i=newN; i>prevN; i--) iF[i-1] = iF[i] * Modint::raw(i); } Comb(int n = 1){ F.assign(2, Modint(1)); iF.assign(2, Modint(1)); extend(n); } Modint factorial(int n) const { return F[n]; } Modint invFactorial(int n) const { return iF[n]; } Modint invOf(int n) const { return iF[n] * F[n-1]; } Modint comb(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[r] * iF[n-r]; } Modint invComb(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[r] * F[n-r]; } Modint perm(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[n-r]; } Modint invPerm(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[n-r]; } Modint operator()(int n, int r) const { return comb(n,r); } }; } // namespace nachia #line 1 "nachia\\fps\\ntt-acl.hpp" #line 2 "nachia\\fps\\ntt-interface.hpp" namespace nachia { template<class mint> struct NttInterface{ template<class Iter> void Butterfly(Iter, int) const {} template<class Iter> void IButterfly(Iter, int) const {} template<class Iter> void BitReversal(Iter a, int N) const { for(int i=0, j=0; j<N; j++){ if(i < j) std::swap(a[i], a[j]); for(int k = N>>1; k > (i^=k); k>>=1); } } }; } // namespace nachia #line 1 "nachia\\misc\\bit-operations.hpp" #line 4 "nachia\\misc\\bit-operations.hpp" namespace nachia{ int Popcount(unsigned long long c) noexcept { #ifdef __GNUC__ return __builtin_popcountll(c); #else c = (c & (~0ull/3)) + ((c >> 1) & (~0ull/3)); c = (c & (~0ull/5)) + ((c >> 2) & (~0ull/5)); c = (c & (~0ull/17)) + ((c >> 4) & (~0ull/17)); c = (c * (~0ull/257)) >> 56; return c; #endif } // please ensure x != 0 int MsbIndex(unsigned long long x) noexcept { #ifdef __GNUC__ return 63 - __builtin_clzll(x); #else int res = 0; for(int d=32; d>=0; d>>=1) if(x >> d){ res |= d; x >>= d; } return res; #endif } // please ensure x != 0 int LsbIndex(unsigned long long x) noexcept { #ifdef __GNUC__ return __builtin_ctzll(x); #else return msb_idx(x & -x); #endif } } #line 5 "nachia\\fps\\ntt-acl.hpp" #include <iterator> #line 8 "nachia\\fps\\ntt-acl.hpp" #include <array> namespace nachia{ constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } template <class mint> struct NttFromAcl : NttInterface<mint> { using u32 = unsigned int; using u64 = unsigned long long; static int ceil_pow2(int n) { int x = 0; while ((1U << x) < (u32)(n)) x++; return x; } struct fft_info { static constexpr u32 g = nachia::PrimitiveRoot<mint::mod()>::val; static constexpr int rank2 = bsf_constexpr(mint::mod()-1); std::array<mint, rank2+1> root; std::array<mint, rank2+1> iroot; std::array<mint, std::max(0, rank2-1)> rate2; std::array<mint, std::max(0, rank2-1)> irate2; std::array<mint, std::max(0, rank2-2)> rate3; std::array<mint, std::max(0, rank2-2)> irate3; fft_info(){ root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); iroot[rank2] = root[rank2].inv(); for(int i=rank2-1; i>=0; i--){ root[i] = root[i+1] * root[i+1]; iroot[i] = iroot[i+1] * iroot[i+1]; } mint prod = 1, iprod = 1; for(int i=0; i<=rank2-2; i++){ rate2[i] = root[i+2] * prod; irate2[i] = iroot[i+2] * iprod; prod *= iroot[i+2]; iprod *= root[i+2]; } prod = 1; iprod = 1; for(int i=0; i<=rank2-3; i++){ rate3[i] = root[i+3] * prod; irate3[i] = iroot[i+3] * iprod; prod *= iroot[i+3]; iprod *= root[i+3]; } } }; template<class RandomAccessIterator> void Butterfly(RandomAccessIterator a, int n) const { int h = ceil_pow2(n); static const fft_info info; int len = 0; while(len < h){ if(h-len == 1){ int p = 1 << (h-len-1); mint rot = 1; for(int s=0; s<(1<<len); s++){ int offset = s << (h-len); for(int i=0; i<p; i++){ auto l = a[i+offset]; auto r = a[i+offset+p] * rot; a[i+offset] = l+r; a[i+offset+p] = l-r; } if(s+1 != (1<<len)) rot *= info.rate2[LsbIndex(~(u32)(s))]; } len++; } else { int p = 1 << (h-len-2); mint rot = 1, imag = info.root[2]; for(int s=0; s<(1<<len); s++){ mint rot2 = rot * rot; mint rot3 = rot2 * rot; int offset = s << (h-len); for(int i=0; i<p; i++){ auto mod2 = 1ULL * mint::mod() * mint::mod(); auto a0 = 1ULL * a[i+offset].val(); auto a1 = 1ULL * a[i+offset+p].val() * rot.val(); auto a2 = 1ULL * a[i+offset+2*p].val() * rot2.val(); auto a3 = 1ULL * a[i+offset+3*p].val() * rot3.val(); auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val() * imag.val(); auto na2 = mod2 - a2; a[i+offset] = a0 + a2 + a1 + a3; a[i+offset+1*p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i+offset+2*p] = a0 + na2 + a1na3imag; a[i+offset+3*p] = a0 + na2 + (mod2 - a1na3imag); } if(s+1 != (1<<len)) rot *= info.rate3[LsbIndex(~(u32)(s))]; } len += 2; } } } template<class RandomAccessIterator> void IButterfly(RandomAccessIterator a, int n) const { int h = ceil_pow2(n); static const fft_info info; constexpr int MOD = mint::mod(); int len = h; while(len){ if(len == 1){ int p = 1 << (h-len); mint irot = 1; for(int s=0; s<(1<<(len-1)); s++){ int offset = s << (h-len+1); for(int i=0; i<p; i++){ auto l = a[i+offset]; auto r = a[i+offset+p]; a[i+offset] = l+r; a[i+offset+p] = (u64)(MOD + l.val() - r.val()) * irot.val(); } if(s+1 != (1<<(len-1))) irot *= info.irate2[LsbIndex(~(u32)(s))]; } len--; } else { int p = 1 << (h-len); mint irot = 1, iimag = info.iroot[2]; for(int s=0; s<(1<<(len-2)); s++){ mint irot2 = irot * irot; mint irot3 = irot2 * irot; int offset = s << (h-len+2); for(int i=0; i<p; i++){ auto a0 = 1ULL * a[i+offset+0*p].val(); auto a1 = 1ULL * a[i+offset+1*p].val(); auto a2 = 1ULL * a[i+offset+2*p].val(); auto a3 = 1ULL * a[i+offset+3*p].val(); auto a2na3iimag = 1ULL * mint((MOD + a2 - a3) * iimag.val()).val(); a[i+offset] = a0 + a1 + a2 + a3; a[i+offset+1*p] = (a0 + (MOD - a1) + a2na3iimag) * irot.val(); a[i+offset+2*p] = (a0 + a1 + (MOD - a2) + (MOD - a3)) * irot2.val(); a[i+offset+3*p] = (a0 + (MOD - a1) + (MOD - a2na3iimag)) * irot3.val(); } if(s+1 != (1<<(len-2))) irot *= info.irate3[LsbIndex(~(u32)(s))]; } len -= 2; } } } }; } // namespace nachia #line 10 "nachia\\fps\\formal-power-series-struct.hpp" namespace nachia { template<class Elem, class NttInst = NttFromAcl<Elem>> struct FormalPowerSeriesNTT { public: using MyType = FormalPowerSeriesNTT; static constexpr unsigned int MOD = Elem::mod(); static const NttInst nttInst; private: using u32 = unsigned int; static const u32 zeta = nachia::PrimitiveRoot<MOD>::GetVal(); static Elem ZeroElem() noexcept { return Elem(0); } static Elem OneElem() noexcept { return Elem(1); } static Comb<Elem> comb; std::vector<Elem> a; public: unsigned int size() const noexcept { return a.size(); } Elem& operator[](unsigned int x) noexcept { return a[x]; } const Elem& operator[](unsigned int x) const noexcept { return a[x]; } Elem get_coeff(unsigned int x) const{ return (x < size()) ? a[x] : ZeroElem(); } static Comb<Elem>& GetComb() { return comb; } MyType& removeLeadingZeros(){ unsigned int newsz = size(); while(newsz && a[newsz-1].val() == 0) newsz--; a.resize(newsz); if(a.capacity() / 4 > newsz) a.shrink_to_fit(); return *this; } FormalPowerSeriesNTT(){ a = { }; } FormalPowerSeriesNTT(unsigned int new_size) : a(new_size, ZeroElem()) {} FormalPowerSeriesNTT(std::vector<Elem>&& src) : a(std::move(src)) {} FormalPowerSeriesNTT(const std::vector<Elem>& src) : a(src) {} MyType& ntt() { int N = 1; while (N < (int)size()) N *= 2; a.resize(N, ZeroElem()); nttInst.Butterfly(a.begin(), N); return *this; } MyType& intt() { nttInst.IButterfly(a.begin(), a.size()); Elem invN = Elem(size()).inv(); for(unsigned int i=0; i<size(); i++) a[i] *= invN; return *this; } // returns [ a[l], a[l+1], a[l+2], ... , a[r-1] ] // a[i] = 0 ( i < 0 OR size() <= i ) MyType getSlice(int l, int r) const { if(l >= r) return MyType(); MyType res(r - l); for(int i=l; i<r; i++) res[i-l] = (0 <= i && i < (int)size()) ? a[i] : ZeroElem(); return res; } // upper < 0 -> upper = lower MyType& capSize(int lower, int upper = -1) { if(upper < 0) upper = lower; if(upper <= (int)size()) a.resize(upper); if((int)size() <= lower) a.resize(lower, ZeroElem()); return *this; } static MyType convolution(const MyType& a, const MyType& b){ if(a.size() <= 30 || b.size() <= 30){ if(a.size() > 30) return convolution(b,a); if(a.size() == 0 || b.size() == 0) return std::vector<Elem>{}; std::vector<Elem> res(a.size() + b.size() - 1); for(std::size_t i=0; i<a.size(); i++){ for(std::size_t j=0; j<b.size(); j++) res[i+j] += a[i] * b[j]; } return res; } int z = a.size() + b.size() - 1; int Z = 1; while(Z < z) Z *= 2; MyType ax = a.getSlice(0, Z); MyType bx = b.getSlice(0, Z); ax.ntt(); bx.ntt(); for(int i=0; i<Z; i++) ax[i] *= bx[i]; ax.intt(); return ax.getSlice(0, z); } static MyType back_half_convolution(unsigned int sz, const MyType& smaller, const MyType& larger){ assert(smaller.size() <= sz); assert(larger.size() <= sz*2); if(sz <= 5) return convolution(smaller, larger).getSlice(sz, sz*2); int z = sz*2; int Z = 1; while(Z < z) Z *= 2; MyType ax = smaller.getSlice(0, Z).ntt(); MyType bx = larger.getSlice(0, Z).ntt(); for(int i=0; i<Z; i++) ax[i] *= bx[i]; ax.intt(); return ax.getSlice(sz, sz*2); } // 1 // ----- = 1 + f + f^2 + f^3 + ... // 1-f MyType power_sum(unsigned int sz){ if (sz == 0) { return {}; } if (sz == 1) { return MyType(std::vector<Elem>{ OneElem() }); } if(sz <= 30){ auto a = getSlice(0, sz); std::vector<Elem> res(sz); res[0] = OneElem(); for(u32 i=1; i<sz; i++) for(u32 j=1; j<=i; j++) res[i] += res[i-j] * a[j]; return res; } u32 N = 1; while (N < sz) N *= 2; u32 hN = N / 2; MyType hInv = power_sum(hN); MyType tgA = getSlice(0, N).ntt(); MyType htInv = hInv.getSlice(0, N); htInv.ntt(); MyType R = MyType(N); for(u32 i=0; i<N; i++) R[i] = tgA[i] * htInv[i]; R = R.intt().getSlice(hN, N + hN).ntt(); for(u32 i=0; i<N; i++) R[i] *= htInv[i]; R.intt(); hInv.capSize(sz, sz); for(u32 i=hN; i<sz; i++) hInv[i] = R[i - hN]; return hInv; } MyType inv(unsigned int sz){ Elem iA0 = a[0].inv(); MyType xA(std::min(sz, size())); for(u32 i=0; i<xA.size(); i++) xA[i] = -a[i] * iA0; xA[0] = 0; xA = xA.power_sum(sz); for(u32 i=0; i<xA.size(); i++) xA[i] *= iA0; return xA; } MyType& difference(){ if(size() == 0) return *this; for(u32 i=0; i+1<size(); i++) a[i] = a[i+1] * Elem(i+1); capSize(0, size() - 1); return *this; } MyType& integral(){ if(size() == 0){ a.push_back(ZeroElem()); return *this; } capSize(size()+1); comb.extend(size()); for(u32 i=size()-1; i>=1; i--) a[i] = a[i-1] * Elem(comb.invOf(i)); a[0] = ZeroElem(); return *this; } MyType copied() const { return MyType(*this); } MyType log(unsigned int sz){ assert(sz != 0); assert(a[0].val() == 1); return convolution(inv(sz), copied().difference()).capSize(sz-1,sz-1).integral(); } MyType exp(unsigned int sz){ MyType res = MyType(std::vector<Elem>{ OneElem() }); while(res.size() < sz){ auto z = res.size(); auto tmp = res.log(z*2); tmp[0] = -OneElem(); for(u32 i=0; i<z*2 && i<size(); i++) tmp[i] = a[i] - tmp[i]; tmp = back_half_convolution(z, res, tmp); res.capSize(std::min(sz, z*2), z); for(u32 i=z; i<res.size(); i++) res[i] = tmp[i-z]; } return res; } MyType& reverse(){ std::reverse(a.begin(), a.end()); return *this; } MyType pow(unsigned long long k){ int n = size(); if(k == 0){ auto res = MyType(n); res[0] = 1; return res; } int ctz = 0; for(int i=0; i<n; i++) if(a[i].val() == 0) ctz = i+1; else break; if((unsigned long long)ctz >= (n-1) / k + 1) return MyType(n); auto res = *this; for(int i=0; i<n-ctz; i++) res[i] = res[i+ctz]; Elem A0 = res[0], iA0 = A0.inv(), pA0 = A0.pow(k); for(int i=0; i<n; i++) res[i] *= iA0; res = res.log(n); for(int i=0; i<n; i++) res[i] *= k; res = res.exp(n); for(int i=0; i<n; i++) res[i] *= pA0; ctz *= k; for(int i=n-1; i>=ctz; i--) res[i] = res[i-ctz]; for(int i=0; i<ctz; i++) res[i] = 0; return res; } auto begin(){ return a.begin(); } auto end(){ return a.end(); } auto begin() const { return a.begin(); } auto end() const { return a.end(); } std::string to_string() const { std::string res = "["; for(auto x : a){ res += " "; res += std::to_string(*x); } res += " ]"; return res; } std::vector<Elem> get_vector_moved(){ std::vector<Elem> res = std::move(a); a.clear(); return std::move(a); } MyType ax_plus_b(Elem a, Elem b) const { auto buf = MyType(size() + 1); for(u32 i=0; i<size(); i++) buf[i] += this->a[i] * b; for(u32 i=0; i<size(); i++) buf[i+1] += this->a[i] * a; return buf; } MyType operator+(const MyType& r) const { auto sz = std::max(this->size(), r.size()); MyType res(sz); for(u32 i=0; i<this->size(); i++) res[i] += this->operator[](i); for(u32 i=0; i<r.size(); i++) res[i] += r[i]; return res; } MyType operator-(const MyType& r) const { auto sz = std::max(this->size(), r.size()); MyType res(sz); for(u32 i=0; i<this->size(); i++) res[i] += this->operator[](i); for(u32 i=0; i<r.size(); i++) res[i] -= r[i]; return res; } MyType operator*(const MyType& r) const { return convolution(*this, r); } MyType& operator*=(const MyType& r){ (*this) = (*this) * r; return *this; } MyType& operator*=(Elem m){ for(size_t i=0; i<a.size(); i++) a[i] *= m; return *this; } MyType operator*(Elem m) const { MyType b = *this; b *= m; return b; } Elem eval(Elem x) const { int z = size(); Elem res = 0; for(int i=z-1; i>=0; i--) res = res * x + a[i]; return res; } }; template<class Elem, class NttInst> Comb<Elem> FormalPowerSeriesNTT<Elem, NttInst>::comb; template<class Elem, class NttInst> const NttInst FormalPowerSeriesNTT<Elem, NttInst>::nttInst; } // namespace nachia #line 2 "nachia\\math\\ext-gcd.hpp" #line 6 "nachia\\math\\ext-gcd.hpp" namespace nachia{ // ax + by = gcd(a,b) std::pair<long long, long long> ExtGcd(long long a, long long b){ long long x = 1, y = 0; while(b){ long long u = a / b; std::swap(a-=b*u, b); std::swap(x-=y*u, y); } return std::make_pair(x, y); } } // namespace nachia #line 5 "nachia\\math-modulo\\static-modint.hpp" namespace nachia{ template<unsigned int MOD> struct StaticModint{ private: using u64 = unsigned long long; unsigned int x; public: using my_type = StaticModint; template< class Elem > static Elem safe_mod(Elem x){ if(x < 0){ if(0 <= x+MOD) return x + MOD; return MOD - ((-(x+MOD)-1) % MOD + 1); } return x % MOD; } StaticModint() : x(0){} StaticModint(const my_type& a) : x(a.x){} StaticModint& operator=(const my_type&) = default; template< class Elem > StaticModint(Elem v) : x(safe_mod(v)){} unsigned int operator*() const noexcept { return x; } my_type& operator+=(const my_type& r) noexcept { auto t = x + r.x; if(t >= MOD) t -= MOD; x = t; return *this; } my_type operator+(const my_type& r) const noexcept { my_type res = *this; return res += r; } my_type& operator-=(const my_type& r) noexcept { auto t = x + MOD - r.x; if(t >= MOD) t -= MOD; x = t; return *this; } my_type operator-(const my_type& r) const noexcept { my_type res = *this; return res -= r; } my_type operator-() const noexcept { my_type res = *this; res.x = ((res.x == 0) ? 0 : (MOD - res.x)); return res; } my_type& operator*=(const my_type& r)noexcept { x = (u64)x * r.x % MOD; return *this; } my_type operator*(const my_type& r) const noexcept { my_type res = *this; return res *= r; } my_type pow(unsigned long long i) const noexcept { my_type a = *this, res = 1; while(i){ if(i & 1){ res *= a; } a *= a; i >>= 1; } return res; } my_type inv() const { return my_type(ExtGcd(x, MOD).first); } unsigned int val() const noexcept { return x; } static constexpr unsigned int mod() { return MOD; } static my_type raw(unsigned int val) noexcept { auto res = my_type(); res.x = val; return res; } my_type& operator/=(const my_type& r){ return operator*=(r.inv()); } my_type operator/(const my_type& r) const { return operator*(r.inv()); } }; } #line 4 "nachia\\fps\\shift-of-sampling-points.hpp" namespace nachia { template <class Elem> std::vector<Elem> ShiftOfSamplingPointsOfPolynomial(std::vector<Elem> points, Elem sh, int count=-1){ using Fps = FormalPowerSeriesNTT<Elem>; int n = points.size(); int m = (count < 0) ? n : count; if(m == 0){ return {}; } if(n == 0){ return std::vector<Elem>(m); } int z = std::max(n, m); Fps iF(z); Fps F(z); F[0] = 1; for(int i=1; i<z; i++) F[i] = F[i-1] * Elem::raw(i); iF[z-1] = F[z-1].inv(); for(int i=z-1; i>=1; i--) iF[i-1] = iF[i] * Elem::raw(i); Fps P(n); for(int i=0; i<n; i++) P[i] = points[i] * iF[i]; Fps iFI(n); for(int i=0; i<n; i++) iFI[i] = (i%2) ? -iF[i] : iF[i]; P = (P * iFI).capSize(n); Elem q = 1; for(int i=1; i<n; i++) iFI[i] = iF[i] * (q *= (sh - Elem::raw(i-1))); for(int i=0; i<n; i++) P[i] *= F[i]; P.reverse(); P = (P * iFI).capSize(n); P.reverse(); for(int i=0; i<n; i++) P[i] *= iF[i]; P = P * iF; std::vector<Elem> res(m); res[0] = P[0]; for(int i=1; i<m; i++) res[i] = P[i] * F[i]; return res; } } // namespace nachia #line 5 "nachia\\linear\\simple-matrix.hpp" namespace nachia{ template<class Elem> struct SimpleMatrix{ private: int h; int w; std::vector<Elem> elems; public: SimpleMatrix(int new_h=0, int new_w=0){ h = new_h; w = new_w; elems.assign(h * w, 0); } SimpleMatrix(SimpleMatrix const&) = default; int numRow() const { return h; } int numColumn() const { return w; } int height() const { return numRow(); } int width() const { return numColumn(); } typename std::vector<Elem>::iterator operator[](int y){ return elems.begin() + (y*w); } typename std::vector<Elem>::const_iterator operator[](int y) const { return elems.begin() + (y*w); } static SimpleMatrix Identity(int idx, Elem One){ auto res = SimpleMatrix(idx, idx); for(int i=0; i<idx; i++) res[i][i] = One; return res; } void swapColumns(int x1, int x2){ assert(0 <= x1 && x1 < numColumn()); assert(0 <= x2 && x2 < numColumn()); for(int y=0; y<numRow(); y++) std::swap((*this)[y][x1], (*this)[y][x2]); } void swapRows(int y1, int y2){ assert(0 <= y1 && y1 < numRow()); assert(0 <= y2 && y2 < numRow()); for(int x=0; x<numColumn(); x++) std::swap((*this)[y1][x], (*this)[y2][x]); } SimpleMatrix operator*(const SimpleMatrix& r) const { assert(width() == r.height()); auto res = SimpleMatrix(h, r.w); for(int i=0; i<h; i++) for(int j=0; j<w; j++) for(int k=0; k<r.w; k++) res[i][k] = res[i][k] + (*this)[i][j] * r[j][k]; return res; } SimpleMatrix pow(unsigned long long i){ auto a = *this; auto res = Identity(height()); while(i){ if(i % 2 == 1) res = res * a; a = a * a; i /= 2; } return res; } }; } // namespace nachia #line 5 "nachia\\fps\\p-recursive-matrix-product.hpp" namespace nachia{ template<class Elem> SimpleMatrix<Elem> PRecursiveMatrixProduct( SimpleMatrix<FormalPowerSeriesNTT<Elem>> p, unsigned long long idx ){ using u64 = unsigned long long; int h = p.height(); std::vector<std::vector<std::vector<Elem>>> res; res.resize(h); for(auto& a : res) a.resize(h); u64 a = 1, b = 1; for(int i=0; i<h; i++) for(int j=0; j<h; j++) while(b < p[i][j].size()) b <<= 1; u64 maxA = 1, maxB = b; while(maxA * maxB <= idx){ maxB <<= 1; maxA <<= 1; } for(int i=0; i<h; i++) for(int j=0; j<h; j++){ res[i][j].resize(b); for(u64 k=0; k<b; k++) res[i][j][k] = p[i][j].eval(Elem(maxA) * Elem(k)); } auto ExtendA = [&](){ for(int i=0; i<h; i++) for(int j=0; j<h; j++){ auto tmp = ShiftOfSamplingPointsOfPolynomial<Elem>(res[i][j], Elem(b)); std::copy(tmp.begin(), tmp.end(), std::back_inserter(res[i][j])); } b *= 2; }; auto ExtendB = [&](){ std::vector<std::vector<std::vector<Elem>>> resbuf; resbuf.assign(h, std::vector<std::vector<Elem>>(h, std::vector<Elem>(b))); for(int i=0; i<h; i++) for(int j=0; j<h; j++){ auto hpq = ShiftOfSamplingPointsOfPolynomial<Elem>(res[i][j], Elem(a) / Elem(maxA)); for(int k=0; k<h; k++){ auto resbeg = res[j][k].begin(); auto destbeg = resbuf[i][k].begin(); for(u64 id=0; id<b; id++) destbeg[id] += hpq[id] * resbeg[id]; } } std::swap(res, resbuf); a *= 2; }; auto EvalP = [p, h](Elem val) -> SimpleMatrix<Elem> { SimpleMatrix<Elem> res(h, h); for(int y=0; y<h; y++) for(int x=0; x<h; x++) res[y][x] = p[y][x].eval(val); return res; }; auto EvalL = [&res, h](u64 idx) -> SimpleMatrix<Elem> { SimpleMatrix<Elem> g(h, h); for(int y=0; y<h; y++) for(int x=0; x<h; x++) g[y][x] = res[y][x][idx]; return g; }; while(b < maxB){ ExtendA(); ExtendB(); } u64 pos = 0; SimpleMatrix<Elem> ans = SimpleMatrix<Elem>::Identity(h, Elem::raw(1)); while(pos + maxA <= idx){ ans = EvalL(pos / maxA) * ans; pos += maxA; } while(pos < idx){ ans = EvalP(pos++) * ans; } return ans; } } // namespace nachia #line 4 "nachia\\fps\\polinomial-division.hpp" namespace nachia{ // return polynomials have no leading zeros template<class Elem> std::pair<FormalPowerSeriesNTT<Elem>, FormalPowerSeriesNTT<Elem>> PolynomialDivision( FormalPowerSeriesNTT<Elem> A, FormalPowerSeriesNTT<Elem> D, bool do_get_remainder = true ){ using Fps = FormalPowerSeriesNTT<Elem>; auto dsize = D.size(); while(dsize != 0 && D[dsize-1].val() == 0) dsize--; assert(dsize != 0); if(A.size() == 0){ return std::make_pair(Fps(), Fps()); } if(A.size() < dsize){ return std::make_pair(Fps(), std::move(A)); } std::reverse(D.begin(), D.begin() + dsize); std::reverse(A.begin(), A.end()); int n = A.size(); unsigned int divSize = n - dsize + 1; auto invD = D.inv(divSize); auto tmp = (A.getSlice(0, divSize) * invD).getSlice(0, divSize); Fps ans1(divSize); for(unsigned int i=0; i<divSize; i++) ans1[divSize-1-i] = tmp[i]; if(!do_get_remainder || dsize == 1) return std::make_pair(std::move(ans1), Fps()); tmp = tmp * D; Fps ans2(dsize - 1); for(unsigned int i=0; i<dsize-1; i++) ans2[i] = A[n-1-i] - tmp[n-1-i]; auto ans2sz = ans2.size(); while(ans2sz != 0 && ans2[ans2sz-1].val() == 0) ans2sz--; return std::make_pair(std::move(ans1), ans2.getSlice(0, ans2sz)); } } // namespace nachia #line 1 "nachia\\atcoder\\static_modint.hpp" #line 1 "nachia\\atcoder\\internal_modint_base.hpp" #line 1 "nachia\\atcoder\\internal_type_traits.hpp" #line 5 "nachia\\atcoder\\internal_type_traits.hpp" #include <numeric> #include <type_traits> namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional< std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional< std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional< std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional< std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional< (is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional< (is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional< std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional< is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional< is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder #line 7 "nachia\\atcoder\\internal_modint_base.hpp" namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal } // namespace atcoder #line 1 "nachia\\atcoder\\internal_math.hpp" #line 5 "nachia\\atcoder\\internal_math.hpp" namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m){ x %= m; if(x < 0) x += m; return x; } // Fast moduler by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { using u64 = unsigned long long; unsigned int _m; u64 im; // @param m `1 <= m` barrett(unsigned int m) : _m(m), im((u64)(-1) / m + 1){} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { u64 z = a; z *= b; #ifdef _MSC_VER u64 x; _umul128(z, im, &x); #else u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if(_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m){ if(m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1, y = safe_mod(x, m); while(n){ if(n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n){ if(n <= 1) return false; if(n == 2 || n == 7 || n == 61) return true; if(n % 2 == 0) return false; long long d = n - 1; while(d % 2 == 0) d /= 2; for(long long a : {2, 7, 61}){ long long t = d, y = pow_mod_constexpr(a, t, n); while(t != n - 1 && y != 1 && y != n - 1){ y = y * y % n; t <<= 1; } if(y != n - 1 && t % 2 == 0) return false; } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b){ a = safe_mod(a, b); if(a == 0) return {b, 0}; long long s = b, t = a, m0 = 0, m1 = 1; while(t){ long long u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if(m0 < 0) m0 += b / s; return {s, m0}; } // @param m must be prime constexpr int primitive_root_constexpr(int m){ if(m == 2) return 1; if(m == 167772161) return 3; if(m == 469762049) return 3; if(m == 754974721) return 11; if(m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m-1) / 2; while(x%2 == 0) x /= 2; for(int i=3; (long long)(i)*i <= x; i += 2){ if(x % i == 0){ divs[cnt++] = i; while(x % i == 0) x /= i; } } if(x>1) divs[cnt++] = x; for(int g=2; ; g++){ bool ok = true; for(int i=0; i<cnt; i++){ if(pow_mod_constexpr(g, (m-1) / divs[i], m) == 1){ ok = false; break; } } if(ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal } // namespace atcoder #line 10 "nachia\\atcoder\\static_modint.hpp" namespace atcoder { template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod(){ return m; } static mint raw(int v){ mint x; x.w = v; return x; } static_modint() : w(0){} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v){ long long x = (long long)(v % (long long)(umod())); if(x < 0) x += umod(); w = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v){ w = (unsigned int)(v % umod()); } static_modint(bool v){ w = ((unsigned int)(v) % umod()); } unsigned int val() const { return w; } mint& operator++(){ w++; if(w == umod()) w = 0; return *this; } mint& operator--(){ if(w == 0) w = umod(); w--; return *this; } mint operator++(int){ mint result = *this; ++*this; return result; } mint operator--(int){ mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs){ w += rhs.w; if(w >= umod()) w -= umod(); return *this; } mint& operator-=(const mint& rhs){ w -= rhs.w; if(w >= umod()) w += umod(); return *this; } mint& operator*=(const mint& rhs){ unsigned long long z = w; z *= rhs.w; w = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs){ return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while(n){ if(n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if(prime){ assert(w); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(w, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs){ return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs){ return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs){ return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs){ return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs){ return lhs.w == rhs.w; } friend bool operator!=(const mint& lhs, const mint& rhs){ return lhs.w != rhs.w; } private: unsigned int w; static constexpr unsigned int umod(){ return m; } static constexpr bool prime = internal::is_prime<m>; }; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; } // namespace internal } // namespace atcoder #line 2 "nachia\\misc\\fastio.hpp" #include <cstdio> #include <cctype> #include <cstdint> #line 6 "nachia\\misc\\fastio.hpp" namespace nachia{ struct CInStream{ private: static const unsigned int INPUT_BUF_SIZE = 1 << 17; unsigned int p = INPUT_BUF_SIZE; static char Q[INPUT_BUF_SIZE]; public: using MyType = CInStream; char seekChar(){ if(p == INPUT_BUF_SIZE){ size_t len = fread(Q, 1, INPUT_BUF_SIZE, stdin); if(len != INPUT_BUF_SIZE) Q[len] = '\0'; p = 0; } return Q[p]; } void skipSpace(){ while(isspace(seekChar())) p++; } uint32_t nextU32(){ skipSpace(); uint32_t buf = 0; while(true){ char tmp = seekChar(); if('9' < tmp || tmp < '0') break; buf = buf * 10 + (tmp - '0'); p++; } return buf; } int32_t nextI32(){ skipSpace(); if(seekChar() == '-'){ p++; return (int32_t)(-nextU32()); } return (int32_t)nextU32(); } uint64_t nextU64(){ skipSpace(); uint64_t buf = 0; while(true){ char tmp = seekChar(); if('9' < tmp || tmp < '0') break; buf = buf * 10 + (tmp - '0'); p++; } return buf; } int64_t nextI64(){ skipSpace(); if(seekChar() == '-'){ p++; return (int64_t)(-nextU64()); } return (int64_t)nextU64(); } char nextChar(){ skipSpace(); char buf = seekChar(); p++; return buf; } std::string nextToken(){ skipSpace(); std::string buf; while(true){ char ch = seekChar(); if(isspace(ch) || ch == '\0') break; buf.push_back(ch); p++; } return buf; } MyType& operator>>(unsigned int& dest){ dest = nextU32(); return *this; } MyType& operator>>(int& dest){ dest = nextI32(); return *this; } MyType& operator>>(unsigned long& dest){ dest = nextU64(); return *this; } MyType& operator>>(long& dest){ dest = nextI64(); return *this; } MyType& operator>>(unsigned long long& dest){ dest = nextU64(); return *this; } MyType& operator>>(long long& dest){ dest = nextI64(); return *this; } MyType& operator>>(std::string& dest){ dest = nextToken(); return *this; } MyType& operator>>(char& dest){ dest = nextChar(); return *this; } } cin; struct FastOutputTable{ char LZ[1000][4] = {}; char NLZ[1000][4] = {}; constexpr FastOutputTable(){ using u32 = uint_fast32_t; for(u32 d=0; d<1000; d++){ LZ[d][0] = ('0' + d / 100 % 10); LZ[d][1] = ('0' + d / 10 % 10); LZ[d][2] = ('0' + d / 1 % 10); LZ[d][3] = '\0'; } for(u32 d=0; d<1000; d++){ u32 i = 0; if(d >= 100) NLZ[d][i++] = ('0' + d / 100 % 10); if(d >= 10) NLZ[d][i++] = ('0' + d / 10 % 10); if(d >= 1) NLZ[d][i++] = ('0' + d / 1 % 10); NLZ[d][i++] = '\0'; } } }; struct COutStream{ private: using u32 = uint32_t; using u64 = uint64_t; using MyType = COutStream; static const u32 OUTPUT_BUF_SIZE = 1 << 17; static char Q[OUTPUT_BUF_SIZE]; static constexpr FastOutputTable TB = FastOutputTable(); u32 p = 0; static constexpr u32 P10(u32 d){ return d ? P10(d-1)*10 : 1; } static constexpr u64 P10L(u32 d){ return d ? P10L(d-1)*10 : 1; } template<class T, class U> static void Fil(T& m, U& l, U x) noexcept { m = l/x; l -= m*x; } void next_dig9(u32 x){ u32 y; Fil(y, x, P10(6)); nextCstr(TB.LZ[y]); Fil(y, x, P10(3)); nextCstr(TB.LZ[y]); nextCstr(TB.LZ[x]); } public: void nextChar(char c){ Q[p++] = c; if(p == OUTPUT_BUF_SIZE){ fwrite(Q, p, 1, stdout); p = 0; } } void nextEoln(){ nextChar('\n'); } void nextCstr(const char* s){ while(*s) nextChar(*(s++)); } void nextU32(uint32_t x){ u32 y = 0; if(x >= P10(9)){ Fil(y, x, P10(9)); nextCstr(TB.NLZ[y]); next_dig9(x); } else if(x >= P10(6)){ Fil(y, x, P10(6)); nextCstr(TB.NLZ[y]); Fil(y, x, P10(3)); nextCstr(TB.LZ[y]); nextCstr(TB.LZ[x]); } else if(x >= P10(3)){ Fil(y, x, P10(3)); nextCstr(TB.NLZ[y]); nextCstr(TB.LZ[x]); } else if(x >= 1) nextCstr(TB.NLZ[x]); else nextChar('0'); } void nextI32(int32_t x){ if(x >= 0) nextU32(x); else{ nextChar('-'); nextU32((u32)-x); } } void nextU64(uint64_t x){ u32 y = 0; if(x >= P10L(18)){ Fil(y, x, P10L(18)); nextU32(y); Fil(y, x, P10L(9)); next_dig9(y); next_dig9(x); } else if(x >= P10L(9)){ Fil(y, x, P10L(9)); nextU32(y); next_dig9(x); } else nextU32(x); } void nextI64(int64_t x){ if(x >= 0) nextU64(x); else{ nextChar('-'); nextU64((u64)-x); } } void writeToFile(bool flush = false){ fwrite(Q, p, 1, stdout); if(flush) fflush(stdout); p = 0; } COutStream(){ Q[0] = 0; } ~COutStream(){ writeToFile(); } MyType& operator<<(unsigned int tg){ nextU32(tg); return *this; } MyType& operator<<(unsigned long tg){ nextU64(tg); return *this; } MyType& operator<<(unsigned long long tg){ nextU64(tg); return *this; } MyType& operator<<(int tg){ nextI32(tg); return *this; } MyType& operator<<(long tg){ nextI64(tg); return *this; } MyType& operator<<(long long tg){ nextI64(tg); return *this; } MyType& operator<<(const std::string& tg){ nextCstr(tg.c_str()); return *this; } MyType& operator<<(const char* tg){ nextCstr(tg); return *this; } MyType& operator<<(char tg){ nextChar(tg); return *this; } } cout; char CInStream::Q[INPUT_BUF_SIZE]; char COutStream::Q[OUTPUT_BUF_SIZE]; } // namespace nachia #line 5 "Main.cpp" int main(){ using Modint = atcoder::static_modint<998244353>; using Polynomial = nachia::FormalPowerSeriesNTT<Modint>; using PolynomialMat = nachia::SimpleMatrix<Polynomial>; using nachia::cin, nachia::cout; auto MatMod = [&](const PolynomialMat& mat, const Polynomial& mod) -> PolynomialMat { int n = mat.height(); PolynomialMat res(n, n); for(int i=0; i<n; i++) for(int j=0; j<n; j++) res[i][j] = nachia::PolynomialDivision(mat[i][j], mod).second; return res; }; int T; cin >> T; if(T <= 5){ for(int t=0; t<T; t++){ unsigned long long N, K; cin >> N >> K; if(K >= 998244353){ cout << "0\n"; continue; } PolynomialMat M_nX = PolynomialMat(2,2); M_nX[0][0] = std::vector<Modint>{ Modint(N) * 2 , -Modint(2) }; // 2N - 2k M_nX[0][1] = std::vector<Modint>{ 0, (Modint(N)*2+1) / 2, -Modint(1) / 2 }; // (2N+1)k/2 - k^2/2 M_nX[1][0] = std::vector<Modint>{ 1 }; M_nX[1][1] = std::vector<Modint>{}; auto ansMat = nachia::PRecursiveMatrixProduct(M_nX, K); Modint ans = ansMat[0][0]; cout << ans.val() << '\n'; } } else{ int MAX_K = 100000; int MATRIX_QUERY = 1001001001; std::vector<std::pair<unsigned long long, int>> NK(T); for(auto& nk : NK) cin >> nk.first >> nk.second; std::vector<std::pair<int, int>> queries; for(int k=0; k<MAX_K; k++) queries.emplace_back(k, MATRIX_QUERY); for(int t=0; t<T; t++) queries.emplace_back(NK[t].second, t); std::sort(queries.begin(), queries.end()); int segN = 1; while(segN < (int)queries.size()) segN *= 2; std::vector<PolynomialMat> FX; std::vector<Polynomial> KX; FX.assign(segN*2, PolynomialMat::Identity(2, Polynomial(std::vector<Modint>{1}))); KX.assign(segN*2, Polynomial(std::vector<Modint>{1})); for(int q=0; q<(int)queries.size(); q++){ if(queries[q].second == MATRIX_QUERY){ int k = queries[q].first; FX[segN+q][0][0] = std::vector<Modint>{ -Modint(k)*2, Modint(2) }; // 2N - 2k FX[segN+q][0][1] = std::vector<Modint>{ Modint(k)*(1-k) / 2, Modint(k) }; // Nk + k(1-k)/2 FX[segN+q][1][0] = std::vector<Modint>{ 1 }; FX[segN+q][1][1] = std::vector<Modint>{}; } else{ unsigned long long N = NK[queries[q].second].first; KX[segN+q] = Polynomial(std::vector<Modint>{ -Modint(N), 1 }); // x - N } } for(int i=segN-1; i>=1; i--) FX[i] = FX[i*2+1] * FX[i*2]; for(int i=segN-1; i>=1; i--) KX[i] = KX[i*2+1] * KX[i*2]; std::vector<PolynomialMat> FXmodKX(segN*2); FXmodKX[1] = MatMod(PolynomialMat::Identity(2, Polynomial(std::vector<Modint>{1})), KX[1]); for(int i=1; i<=segN-1; i++){ FXmodKX[i*2] = MatMod(FXmodKX[i], KX[i*2]); FXmodKX[i*2+1] = MatMod(FX[i*2] * FXmodKX[i], KX[i*2+1]); } std::vector<Modint> ans(T); for(int q=0; q<(int)queries.size(); q++){ if(queries[q].second != MATRIX_QUERY){ ans[queries[q].second] = FXmodKX[segN+q][0][0].eval(0); } } for(int i=0; i<T; i++) cout << ans[i].val() << '\n'; } return 0; }