結果
| 問題 |
No.2163 LCA Sum Query
|
| コンテスト | |
| ユーザー |
hotman78
|
| 提出日時 | 2022-12-12 19:54:51 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
TLE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 15,800 bytes |
| コンパイル時間 | 23,636 ms |
| コンパイル使用メモリ | 344,060 KB |
| 最終ジャッジ日時 | 2025-02-09 10:30:28 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 38 TLE * 2 |
コンパイルメッセージ
main.cpp:99:9: warning: #pragma once in main file
99 | #pragma once
| ^~~~
ソースコード
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("avx2")
#include<bits/stdc++.h>
using namespace std;
struct __INIT__{__INIT__(){cin.tie(0);ios::sync_with_stdio(false);cout<<fixed<<setprecision(15);}}__INIT__;
typedef long long lint;
#define INF (1LL<<60)
#define IINF (1<<30)
#define EPS (1e-10)
#define endl ('\n')
typedef vector<lint> vec;
typedef vector<vector<lint>> mat;
typedef vector<vector<vector<lint>>> mat3;
typedef vector<string> svec;
typedef vector<vector<string>> smat;
template<typename T>using V=vector<T>;
template<typename T>using VV=V<V<T>>;
template<typename T>inline void output(T t){bool f=0;for(auto i:t){cout<<(f?" ":"")<<i;f=1;}cout<<endl;}
template<typename T>inline void output2(T t){for(auto i:t)output(i);}
template<typename T>inline void debug(T t){
#ifdef LOCAL
bool f=0;for(auto i:t){cerr<<(f?" ":"")<<i;f=1;}cerr<<endl;
#endif
}
template<typename T>inline void debug2(T t){for(auto i:t)debug(i);}
#define loop(n) for(long long _=0;_<(long long)(n);++_)
#define _overload4(_1,_2,_3,_4,name,...) name
#define __rep(i,a) repi(i,0,a,1)
#define _rep(i,a,b) repi(i,a,b,1)
#define repi(i,a,b,c) for(long long i=(long long)(a);i<(long long)(b);i+=c)
#define rep(...) _overload4(__VA_ARGS__,repi,_rep,__rep)(__VA_ARGS__)
#define _overload3_rev(_1,_2,_3,name,...) name
#define _rep_rev(i,a) repi_rev(i,0,a)
#define repi_rev(i,a,b) for(long long i=(long long)(b)-1;i>=(long long)(a);--i)
#define rrep(...) _overload3_rev(__VA_ARGS__,repi_rev,_rep_rev)(__VA_ARGS__)
// #define rep(i,...) for(auto i:range(__VA_ARGS__))
// #define rrep(i,...) for(auto i:reversed(range(__VA_ARGS__)))
// #define repi(i,a,b) for(lint i=lint(a);i<(lint)(b);++i)
// #define rrepi(i,a,b) for(lint i=lint(b)-1;i>=lint(a);--i)
// #define irep(i) for(lint i=0;;++i)
// inline vector<long long> range(long long n){if(n<=0)return vector<long long>();vector<long long>v(n);iota(v.begin(),v.end(),0LL);return v;}
// inline vector<long long> range(long long a,long long b){if(b<=a)return vector<long long>();vector<long long>v(b-a);iota(v.begin(),v.end(),a);return v;}
// inline vector<long long> range(long long a,long long b,long long c){if((b-a+c-1)/c<=0)return vector<long long>();vector<long long>v((b-a+c-1)/c);for(int i=0;i<(int)v.size();++i)v[i]=i?v[i-1]+c:a;return v;}
// template<typename T>inline T reversed(T v){reverse(v.begin(),v.end());return v;}
#define all(n) begin(n),end(n)
template<typename T,typename E>bool chmin(T& s,const E& t){bool res=s>t;s=min<T>(s,t);return res;}
template<typename T,typename E>bool chmax(T& s,const E& t){bool res=s<t;s=max<T>(s,t);return res;}
// const array<lint,8> dx={1,0,-1,0,1,1,-1,-1};
// const array<lint,8> dy={0,1,0,-1,1,-1,1,-1};
// const string ds="RDLU";
#define SUM(v) accumulate(all(v),0LL)
#if __cplusplus>=201703L
template<typename T,typename ...Args>auto make_vector(T x,int arg,Args ...args){if constexpr(sizeof...(args)==0)return vector<T>(arg,x);else return vector(arg,make_vector<T>(x,args...));}
#endif
#define extrep(v,...) for(auto v:__MAKE_MAT__({__VA_ARGS__}))
#define bit(n,a) ((n>>a)&1)
vector<vector<long long>> __MAKE_MAT__(vector<long long> v){if(v.empty())return vector<vector<long long>>(1,vector<long long>());long long n=v.back();v.pop_back();vector<vector<long long>> ret;vector<vector<long long>> tmp=__MAKE_MAT__(v);for(auto e:tmp)for(long long i=0;i<n;++i){ret.push_back(e);ret.back().push_back(i);}return ret;}
using graph=vector<vector<int>>;
template<typename T>using graph_w=vector<vector<pair<int,T>>>;
#if __cplusplus>=201703L
constexpr inline long long powll(long long a,long long b){long long res=1;while(b--)res*=a;return res;}
#endif
template<typename T,typename E>pair<T,E>& operator+=(pair<T,E>&s,const pair<T,E>&t){s.first+=t.first;s.second+=t.second;return s;}
template<typename T,typename E>pair<T,E>& operator-=(pair<T,E>&s,const pair<T,E>&t){s.first-=t.first;s.second-=t.second;return s;}
template<typename T,typename E>pair<T,E> operator+(const pair<T,E>&s,const pair<T,E>&t){auto res=s;return res+=t;}
template<typename T,typename E>pair<T,E> operator-(const pair<T,E>&s,const pair<T,E>&t){auto res=s;return res-=t;}
#define BEGIN_STACK_EXTEND(size) void * stack_extend_memory_ = malloc(size);void * stack_extend_origin_memory_;char * stack_extend_dummy_memory_ = (char*)alloca((1+(int)(((long long)stack_extend_memory_)&127))*16);*stack_extend_dummy_memory_ = 0;asm volatile("mov %%rsp, %%rbx\nmov %%rax, %%rsp":"=b"(stack_extend_origin_memory_):"a"((char*)stack_extend_memory_+(size)-1024));
#define END_STACK_EXTEND asm volatile("mov %%rax, %%rsp"::"a"(stack_extend_origin_memory_));free(stack_extend_memory_);
#include<vector>
#include<tuple>
#include<iostream>
/**
* @brief グラフテンプレート
*/
using graph=std::vector<std::vector<int>>;
template<typename T>
using graph_w=std::vector<std::vector<std::pair<int,T>>>;
graph load_graph(int n,int m){graph g(n);for(int i=0;i<m;++i){int s,t;std::cin>>s>>t;--s;--t;g[s].push_back(t);g[t].push_back(s);}return g;}
graph load_digraph(int n,int m){graph g(n);for(int i=0;i<m;++i){int s,t;std::cin>>s>>t;--s;--t;g[s].push_back(t);}return g;}
graph load_graph0(int n,int m){graph g(n);for(int i=0;i<m;++i){int s,t;std::cin>>s>>t;g[s].push_back(t);g[t].push_back(s);}return g;}
graph load_digraph0(int n,int m){graph g(n);for(int i=0;i<m;++i){int s,t;std::cin>>s>>t;g[s].push_back(t);}return g;}
graph load_tree(int n){graph g(n);for(int i=0;i<n-1;++i){int s,t;std::cin>>s>>t;--s;--t;g[s].push_back(t);g[t].push_back(s);}return g;}
graph load_tree0(int n){graph g(n);for(int i=0;i<n-1;++i){int s,t;std::cin>>s>>t;g[s].push_back(t);g[t].push_back(s);}return g;}
graph load_treep(int n){graph g(n);for(int i=0;i<n-1;++i){int t;std::cin>>t;g[i+1].push_back(t);g[t].push_back(i+1);}return g;}
template<typename T>graph_w<T> load_graph_weight(int n,int m){graph_w<T> g(n);for(int i=0;i<m;++i){int s,t;T u;std::cin>>s>>t>>u;--s;--t;g[s].emplace_back(t,u);g[t].emplace_back(s,u);}return g;}
template<typename T>graph_w<T> load_digraph_weight(int n,int m){graph_w<T> g(n);for(int i=0;i<m;++i){int s,t;T u;std::cin>>s>>t>>u;--s;--t;g[s].emplace_back(t,u);}return g;}
template<typename T>graph_w<T> load_graph0_weight(int n,int m){graph_w<T> g(n);for(int i=0;i<m;++i){int s,t;T u;std::cin>>s>>t>>u;g[s].emplace_back(t,u);g[t].emplace_back(s,u);}return g;}
template<typename T>graph_w<T> load_digraph0_weight(int n,int m){graph_w<T> g(n);for(int i=0;i<m;++i){int s,t;T u;std::cin>>s>>t>>u;g[s].emplace_back(t,u);}return g;}
template<typename T>graph_w<T> load_tree_weight(int n){graph_w<T> g(n);for(int i=0;i<n-1;++i){int s,t;T u;std::cin>>s>>t>>u;--s;--t;g[s].emplace_back(t,u);g[t].emplace_back(s,u);}return g;}
template<typename T>graph_w<T> load_tree0_weight(int n){graph_w<T> g(n);for(int i=0;i<n-1;++i){int s,t;T u;std::cin>>s>>t>>u;g[s].emplace_back(t,u);g[t].emplace_back(s,u);}return g;}
template<typename T>graph_w<T> load_treep_weight(int n){graph_w<T> g(n);for(int i=0;i<n-1;++i){int t;T u;std::cin>>t>>u;g[i+1].emplace_back(t,u);g[t].emplace_back(i+1,u);}return g;}
#pragma once
#include<cassert>
/**
* @brief Maybe
* @see https://ja.wikipedia.org/wiki/%E3%83%A2%E3%83%8A%E3%83%89_(%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0)#Maybe%E3%83%A2%E3%83%8A%E3%83%89
*/
template<typename T>
struct maybe{
bool _is_none;
T val;
maybe():_is_none(true){}
maybe(T val):_is_none(false),val(val){}
T unwrap()const{
assert(!_is_none);
return val;
}
T unwrap_or(T e)const{
return _is_none?e:val;
}
bool is_none()const{return _is_none;}
bool is_some()const{return !_is_none;}
};
template<typename T,typename F>
auto expand(F op){
return [&op](const maybe<T>& __s,const maybe<T>& __t)->maybe<T>{
if(__s.is_none())return __t;
if(__t.is_none())return __s;
return maybe<T>(op(__s.unwrap(),__t.unwrap()));
};
}
template<typename T,typename E,typename F,typename G,typename H>
class lazy_segment_tree{
using i64=long long;
i64 n;
i64 sz;
struct node;
using np=node*;
struct node{
maybe<T> val=maybe<T>();
maybe<E> lazy=maybe<E>();
np lch=nullptr,rch=nullptr;
node(){}
};
np root=new node();
maybe<T> update(i64 a,i64 b,E x,i64 l,i64 r,np t){
auto f=expand<T,F>(_f);
eval(t,l,r);
//区間外
if(r<=a||b<=l)return t->val;
//全部区間内
if(a<=l&&r<=b){
t->lazy=x;
eval(t,l,r);
return t->val;
}
//一部区間内
return t->val=f(update(a,b,x,l,(l+r)/2,t->lch),update(a,b,x,(l+r)/2,r,t->rch));
}
maybe<T> get(i64 a,i64 b,i64 l,i64 r,np t){
auto f=expand<T,F>(_f);
eval(t,l,r);
//区間外
if(r<=a||b<=l)return maybe<T>();
//全部区間内
if(a<=l&&r<=b)return t->val;
//一部区間内
return f(get(a,b,l,(l+r)/2,t->lch),get(a,b,(l+r)/2,r,t->rch));
}
void eval(np t,i64 l,i64 r){
auto g=expand<E,G>(_g);
if(r-l>1){
if(!t->lch)t->lch=new node();
if(!t->rch)t->rch=new node();
t->lch->lazy=g(t->lch->lazy,t->lazy);
t->rch->lazy=g(t->rch->lazy,t->lazy);
}
t->val=h(t->val,t->lazy,l,r);
t->lazy=maybe<E>();
}
F _f;G _g;H _h;
maybe<T> h(const maybe<T>&s,const maybe<E>&t,i64 l,i64 r){
if(t.is_none())return s;
else return maybe<T>(_h(s,t.unwrap(),l,r));
}
public:
lazy_segment_tree(i64 sz,F f=F(),G g=G(),H h=H()):n(1),sz(sz),_f(f),_g(g),_h(h){while(n<sz)n<<=1;}
//0-indexed [a,b)
void update(i64 a,i64 b,E x){update(a,b,x,0,n,root);}
//0-indexed [a,b)
maybe<T> get(i64 a,i64 b){return get(a,b,0,n,root);}
};
template<typename T,typename E,typename F,typename G,typename H>
class HLD_lazy{
int child_size(const graph& v,int n,int p){
int cnt=0;
for(auto t:v[n]){
if(t!=p)cnt+=child_size(v,t,n);
}
return sz[n]=cnt+1;
}
void make(const graph& v,int root){
sz=new int[v.size()];
vertex=new int[v.size()];
par=new int[v.size()];
head=new int[v.size()];
heavy=new int[v.size()];
child_size(v,root,-1);
stack<tuple<int,int>>stk;
stk.emplace(root,-1);
int idx=0;
par[root]=root;
head[root]=root;
while(!stk.empty()){
int n,p;
tie(n,p)=stk.top();
stk.pop();
vertex[n]=idx++;
heavy[n]=-1;
int mx=0;
for(auto t:v[n])if(t!=p&&mx<sz[t]){
mx=sz[t];
heavy[n]=t;
}
for(auto t:v[n]){
if(t!=heavy[n]&&t!=p){
par[t]=n;
head[t]=t;
stk.emplace(t,n);
}
}
if(heavy[n]!=-1){
par[heavy[n]]=par[n];
head[heavy[n]]=head[n];
stk.emplace(heavy[n],n);
}
}
}
int* sz;
int* vertex;
int* par;
int* head;
int* heavy;
F _f;G _g;H _h;
lazy_segment_tree<T,E,F,G,H>* seg;
public:
HLD_lazy(const graph& v,int root=0,F f=F(),G g=G(),H h=H()):_f(f),_g(g),_h(h){
make(v,root);
seg=new lazy_segment_tree<T,E,F,G,H>(v.size(),f,g,h);
}
HLD_lazy(const graph& v,const vector<T>& a,int root=0,F f=F(),G g=G(),H h=H()):_f(f),_g(g),_h(h){
vector<T>tmp(v.size());
make(v,root);
for(int i=0;i<(int)v.size();i++){
tmp[vertex[i]]=a[i];
}
seg=new lazy_segment_tree(tmp,f,g,h);
}
// uからvに一つ進んだ点(vがuの子のときのみ)
int next_u(int u,int v){
while(1){
if(par[v]==u){
if(head[v]!=par[v]){
return head[v];
}else{
return heavy[u];
}
}
else if(sz[u]>sz[head[v]])v=par[v];
else return heavy[u];
}
}
int dist(int l,int r){
int res=0;
while(1){
if(head[l]==head[r])return sz[l]>sz[r]?l:r;
else if(sz[head[l]]>sz[head[r]])r=par[r];
else l=par[l];
}
}
int lca(int l,int r){
while(1){
if(head[l]==head[r])return sz[l]>sz[r]?l:r;
else if(sz[head[l]]>sz[head[r]])r=par[r];
else l=par[l];
}
}
inline void update_vertex(int u,E x){
update_seg(vertex[u],vertex[u],x);
}
inline maybe<T> get_vertex(int u){
return get_seg(vertex[u],vertex[u]);
}
inline void update_subtree(int u,E x){
update_seg(vertex[u],vertex[u]+sz[u]-1,x);
}
inline maybe<T> get_subtree(int u){
return get_seg(vertex[u],vertex[u]+sz[u]-1);
}
maybe<T> get_seg(int u,int v){
if(u>v)swap(u,v);
// cerr<<u<<" "<<v<<endl;
return seg->get(u,v+1);
}
void update_seg(int u,int v,E x){
if(u>v)swap(u,v);
seg->update(u,v+1,x);
}
void update_path(int u,int v,E x){
while(1){
if(head[u]==head[v]){
update_seg(vertex[u],vertex[v],x);
break;
}
else if(sz[head[u]]>sz[head[v]]){
update_seg(vertex[v],vertex[head[v]],x);
v=par[v];
}
else{
update_seg(vertex[u],vertex[head[u]],x);
u=par[u];
}
}
}
maybe<T> get_path(int u,int v){
auto f=expand<T,F>(_f);
maybe<T> res;
while(1){
if(head[u]==head[v]){
return f(res,get_seg(vertex[u],vertex[v]));
}
else if(sz[head[u]]>sz[head[v]]){
res=f(res,get_seg(vertex[v],vertex[head[v]]));
v=par[v];
}
else{
res=f(res,get_seg(vertex[u],vertex[head[u]]));
u=par[u];
}
}
}
};
int main(){
auto zero=make_tuple(0LL,0LL,0LL,0LL);
lint n,q;
cin>>n>>q;
vector<vector<int>>g(n);
rep(i,n-1){
lint s,t;
cin>>s>>t;
s--;t--;
g[s].emplace_back(t);
g[t].emplace_back(s);
}
auto f_=[](auto s,auto t)
{
auto [a,b,c,d]=s;
auto [e,f,g,h]=t;
return make_tuple(a+e,b+f,c+g,d+h);
};
auto g_=[](auto s,auto t)
{
auto [a,b,c]=s;
auto [p,q,r]=t;
return make_tuple(a+p,b+q,c+r);
};
auto h_=[&](auto s,auto t,auto ll,auto rr)
{
auto [a,b,c,d]=s.unwrap_or(zero);
auto [p,q,r]=t;
d+=r;
// cerr<<c<<a<<b<<p<<q<<c+a*q+b*p+p*q<<endl;
return make_tuple(a+p*d,b+q*d,c+a*q+b*p+d*p*q,d);
};
auto h2_=[&](auto s,auto t,auto ll,auto rr)
{
return s.unwrap_or(0)+t;
};
HLD_lazy<tuple<lint,lint,lint,lint>,tuple<lint,lint,lint>,decltype(f_),decltype(g_),decltype(h_)>hld1(g,0,f_,g_,h_),hld2(g,0,f_,g_,h_);
HLD_lazy<lint,lint,plus<lint>,plus<lint>,decltype(h2_)>sz(g,0,plus<lint>(),plus<lint>(),h2_),sum(g,0,plus<lint>(),plus<lint>(),h2_);
vector<lint>par(n);
par[0]=-1;
auto dfs=[&](auto dfs,lint now,lint p)->void
{
for(auto e:g[now]){
if(e==p)continue;
par[e]=now;
dfs(dfs,e,now);
}
};
dfs(dfs,0,-1);
rep(i,n){
hld1.update_vertex(i,make_tuple(0LL,0LL,i-par[i]));
hld2.update_vertex(i,make_tuple(0LL,0LL,i-par[i]));
}
set<lint>s;
while(q--){
lint u,r,v;
cin>>u>>r>>v;
u--;r--;v--;
if(s.count(u)){
s.erase(u);
hld1.update_path(0,u,make_tuple(-1LL,-1LL,0LL));
hld2.update_path(0,u,make_tuple(1LL,-1LL,0LL));
hld2.update_subtree(0,make_tuple(-1LL,0LL,0LL));
sz.update_vertex(u,-1);
sum.update_vertex(u,-u-1);
}else{
s.emplace(u);
hld1.update_path(0,u,make_tuple(1LL,1LL,0LL));
hld2.update_path(0,u,make_tuple(-1LL,1LL,0LL));
hld2.update_subtree(0,make_tuple(1LL,0LL,0LL));
sz.update_vertex(u,1);
sum.update_vertex(u,u+1);
}
// 1を根として見た時のvの部分木かつSに含まれる集合の頂点番号の総和
auto s1v=[&](auto v){
return sum.get_subtree(v).unwrap_or(0);
};
// 1を根として見た時のvの部分木かつSに含まれる集合の個数
auto c1v=[&](auto v){
return sz.get_subtree(v).unwrap_or(0);
};
// r=1の時の解
auto f1v=[&](auto v){
return (get<2>(hld1.get_subtree(v).unwrap_or(zero))+c1v(v)*c1v(v)*(par[v]+1)-s1v(v))/2;
};
// r=vの時の解
auto fvv=[&](auto v){
return f1v(0)+get<2>(hld2.get_path(0,v).unwrap_or(zero));
};
if(r==v){
cout<<fvv(v)<<endl;
}else if(hld1.lca(r,v)!=v){
cout<<f1v(v)<<endl;
}else{
lint x=hld1.next_u(v,r);
lint c1x=c1v(x);
// bool ok=0;
// for(auto e:g[v]){
// if(x==e)ok=1;
// }
// assert(ok);
cout<<fvv(v)-f1v(x)-(v+1)*c1x*(s.size()-c1x)<<endl;
}
}
}
hotman78