結果
問題 | No.2162 Copy and Paste 2 |
ユーザー | torisasami4 |
提出日時 | 2022-12-13 12:25:25 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 771 ms / 7,000 ms |
コード長 | 8,647 bytes |
コンパイル時間 | 3,193 ms |
コンパイル使用メモリ | 234,904 KB |
実行使用メモリ | 51,888 KB |
最終ジャッジ日時 | 2024-11-07 08:19:24 |
合計ジャッジ時間 | 15,155 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 132 ms
29,864 KB |
testcase_07 | AC | 145 ms
30,196 KB |
testcase_08 | AC | 293 ms
36,772 KB |
testcase_09 | AC | 334 ms
35,780 KB |
testcase_10 | AC | 346 ms
35,028 KB |
testcase_11 | AC | 408 ms
38,408 KB |
testcase_12 | AC | 439 ms
40,756 KB |
testcase_13 | AC | 537 ms
46,004 KB |
testcase_14 | AC | 301 ms
37,296 KB |
testcase_15 | AC | 331 ms
38,476 KB |
testcase_16 | AC | 341 ms
38,900 KB |
testcase_17 | AC | 513 ms
45,720 KB |
testcase_18 | AC | 699 ms
51,196 KB |
testcase_19 | AC | 639 ms
48,840 KB |
testcase_20 | AC | 589 ms
47,896 KB |
testcase_21 | AC | 354 ms
39,748 KB |
testcase_22 | AC | 357 ms
38,948 KB |
testcase_23 | AC | 120 ms
29,752 KB |
testcase_24 | AC | 756 ms
51,040 KB |
testcase_25 | AC | 759 ms
51,172 KB |
testcase_26 | AC | 745 ms
51,888 KB |
testcase_27 | AC | 771 ms
51,172 KB |
testcase_28 | AC | 701 ms
49,472 KB |
ソースコード
#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math") #include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < int(n); i++) #define per(i, n) for (int i = (n)-1; 0 <= i; i--) #define rep2(i, l, r) for (int i = (l); i < int(r); i++) #define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() template <typename T> void print(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } using ll = long long; using pii = pair<int, int>; using pll = pair<ll, ll>; template <typename T> bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template <class T> using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>; template <class T> using maxheap = std::priority_queue<T>; template <typename T> int lb(const vector<T> &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T> &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T> &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } // __int128_t gcd(__int128_t a, __int128_t b) { // if (a == 0) // return b; // if (b == 0) // return a; // __int128_t cnt = a % b; // while (cnt != 0) { // a = b; // b = cnt; // cnt = a % b; // } // return b; // } long long extGCD(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1; y = 0; return a; } long long d = extGCD(b, a % b, y, x); y -= a / b * x; return d; } struct UnionFind { vector<int> data; int num; UnionFind(int sz) { data.assign(sz, -1); num = sz; } bool unite(int x, int y) { x = find(x), y = find(y); if (x == y) return (false); if (data[x] > data[y]) swap(x, y); data[x] += data[y]; data[y] = x; num--; return (true); } int find(int k) { if (data[k] < 0) return (k); return (data[k] = find(data[k])); } int size(int k) { return (-data[find(k)]); } bool same(int x, int y) { return find(x) == find(y); } int operator[](int k) { return find(k); } }; template <int mod> struct Mod_Int { int x; Mod_Int() : x(0) { } Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) { } static int get_mod() { return mod; } Mod_Int &operator+=(const Mod_Int &p) { if ((x += p.x) >= mod) x -= mod; return *this; } Mod_Int &operator-=(const Mod_Int &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } Mod_Int &operator*=(const Mod_Int &p) { x = (int)(1LL * x * p.x % mod); return *this; } Mod_Int &operator/=(const Mod_Int &p) { *this *= p.inverse(); return *this; } Mod_Int &operator++() { return *this += Mod_Int(1); } Mod_Int operator++(int) { Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int &operator--() { return *this -= Mod_Int(1); } Mod_Int operator--(int) { Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator-() const { return Mod_Int(-x); } Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; } Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; } Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; } Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; } bool operator==(const Mod_Int &p) const { return x == p.x; } bool operator!=(const Mod_Int &p) const { return x != p.x; } Mod_Int inverse() const { assert(*this != Mod_Int(0)); return pow(mod - 2); } Mod_Int pow(long long k) const { Mod_Int now = *this, ret = 1; for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; } friend istream &operator>>(istream &is, Mod_Int &p) { long long a; is >> a; p = Mod_Int<mod>(a); return is; } }; ll mpow2(ll x, ll n, ll mod) { ll ans = 1; x %= mod; while (n != 0) { if (n & 1) ans = ans * x % mod; x = x * x % mod; n = n >> 1; } ans %= mod; return ans; } ll modinv2(ll a, ll mod) { ll b = mod, u = 1, v = 0; while (b) { ll t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } u %= mod; if (u < 0) u += mod; return u; } ll divide_int(ll a, ll b) { if (b < 0) a = -a, b = -b; return (a >= 0 ? a / b : (a - b + 1) / b); } const int MOD = 1000000007; // const int MOD = 998244353; using mint = Mod_Int<MOD>; mint mpow(mint x, ll n) { bool rev = n < 0; n = abs(n); mint ans = 1; while (n != 0) { if (n & 1) ans *= x; x *= x; n = n >> 1; } return (rev ? ans.inverse() : ans); } // ----- library ------- vector<int> z_algorithm(const string &s) { vector<int> prefix(s.size()); for (int i = 1, j = 0; i < s.size(); i++) { if (i + prefix[i - j] < j + prefix[j]) { prefix[i] = prefix[i - j]; } else { int k = max(0, j + prefix[j] - i); while (i + k < s.size() && s[k] == s[i + k]) ++k; prefix[i] = k; j = i; } } prefix[0] = (int)s.size(); return prefix; } template <typename Operator_Monoid> struct Dual_Segment_Tree { using H = function<Operator_Monoid(Operator_Monoid, Operator_Monoid)>; int n, height; vector<Operator_Monoid> lazy; const H h; const Operator_Monoid e2; // h(h(p,q),r) = h(p,h(q,r)), h(e2,p) = h(p,e2) = p Dual_Segment_Tree(int m, const H &h, const Operator_Monoid &e2) : h(h), e2(e2) { n = 1, height = 0; while (n < m) n <<= 1, height++; lazy.assign(2 * n, e2); } inline void eval(int i) { if (i < n && lazy[i] != e2) { lazy[2 * i] = h(lazy[2 * i], lazy[i]); lazy[2 * i + 1] = h(lazy[2 * i + 1], lazy[i]); lazy[i] = e2; } } inline void thrust(int i) { for (int j = height; j > 0; j--) eval(i >> j); } void apply(int l, int r, const Operator_Monoid &x) { l = max(l, 0), r = min(r, n); if (l >= r) return; l += n, r += n; thrust(l), thrust(r - 1); while (l < r) { if (l & 1) lazy[l] = h(lazy[l], x), l++; if (r & 1) r--, lazy[r] = h(lazy[r], x); l >>= 1, r >>= 1; } } Operator_Monoid get(int i) { thrust(i + n); return lazy[i + n]; } Operator_Monoid operator[](int i) { return get(i); } }; // ----- library ------- int main() { ios::sync_with_stdio(false); std::cin.tie(nullptr); cout << fixed << setprecision(15); string s; cin >> s; int n = sz(s); auto pre = z_algorithm(s); minheap<int> que; vector<vector<int>> ev(n + 1), bo(n + 1); rep(i, n + 1) bo[i].eb(i + 1); rep2(i, 1, n) ev[i].eb(i); rep(i, n) { for (auto &e : ev[i]) que.push(e); while (sz(que)) { auto now = que.top(); if (pre[i] >= now) { que.pop(); bo[now].eb(i + now); ev[i + now].eb(now); } else break; } } rep(i, n + 1) bo[i].eb(n + 1); Dual_Segment_Tree<int> seg(n + 1, [](int a, int b) { return max(a, b); }, 0); rep(i, n) { int now = seg[i]; rep(j, sz(bo[i]) - 1) seg.apply(bo[i][j], bo[i][j + 1], now + max(0, (i - 1) * j - 1)); } cout << n - seg[n] << endl; }