結果
| 問題 |
No.2162 Copy and Paste 2
|
| コンテスト | |
| ユーザー |
torisasami4
|
| 提出日時 | 2022-12-13 12:25:25 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 808 ms / 7,000 ms |
| コード長 | 8,647 bytes |
| コンパイル時間 | 2,843 ms |
| コンパイル使用メモリ | 234,856 KB |
| 最終ジャッジ日時 | 2025-02-09 10:53:30 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 26 |
ソースコード
#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < int(n); i++)
#define per(i, n) for (int i = (n)-1; 0 <= i; i--)
#define rep2(i, l, r) for (int i = (l); i < int(r); i++)
#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++)
cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty())
cout << '\n';
}
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T>
using maxheap = std::priority_queue<T>;
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
// __int128_t gcd(__int128_t a, __int128_t b) {
// if (a == 0)
// return b;
// if (b == 0)
// return a;
// __int128_t cnt = a % b;
// while (cnt != 0) {
// a = b;
// b = cnt;
// cnt = a % b;
// }
// return b;
// }
long long extGCD(long long a, long long b, long long &x, long long &y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
long long d = extGCD(b, a % b, y, x);
y -= a / b * x;
return d;
}
struct UnionFind {
vector<int> data;
int num;
UnionFind(int sz) {
data.assign(sz, -1);
num = sz;
}
bool unite(int x, int y) {
x = find(x), y = find(y);
if (x == y)
return (false);
if (data[x] > data[y])
swap(x, y);
data[x] += data[y];
data[y] = x;
num--;
return (true);
}
int find(int k) {
if (data[k] < 0)
return (k);
return (data[k] = find(data[k]));
}
int size(int k) {
return (-data[find(k)]);
}
bool same(int x, int y) {
return find(x) == find(y);
}
int operator[](int k) {
return find(k);
}
};
template <int mod>
struct Mod_Int {
int x;
Mod_Int() : x(0) {
}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {
}
static int get_mod() {
return mod;
}
Mod_Int &operator+=(const Mod_Int &p) {
if ((x += p.x) >= mod)
x -= mod;
return *this;
}
Mod_Int &operator-=(const Mod_Int &p) {
if ((x += mod - p.x) >= mod)
x -= mod;
return *this;
}
Mod_Int &operator*=(const Mod_Int &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
Mod_Int &operator/=(const Mod_Int &p) {
*this *= p.inverse();
return *this;
}
Mod_Int &operator++() {
return *this += Mod_Int(1);
}
Mod_Int operator++(int) {
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int &operator--() {
return *this -= Mod_Int(1);
}
Mod_Int operator--(int) {
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator-() const {
return Mod_Int(-x);
}
Mod_Int operator+(const Mod_Int &p) const {
return Mod_Int(*this) += p;
}
Mod_Int operator-(const Mod_Int &p) const {
return Mod_Int(*this) -= p;
}
Mod_Int operator*(const Mod_Int &p) const {
return Mod_Int(*this) *= p;
}
Mod_Int operator/(const Mod_Int &p) const {
return Mod_Int(*this) /= p;
}
bool operator==(const Mod_Int &p) const {
return x == p.x;
}
bool operator!=(const Mod_Int &p) const {
return x != p.x;
}
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod - 2);
}
Mod_Int pow(long long k) const {
Mod_Int now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1)
ret *= now;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Mod_Int &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, Mod_Int &p) {
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
ll mpow2(ll x, ll n, ll mod) {
ll ans = 1;
x %= mod;
while (n != 0) {
if (n & 1)
ans = ans * x % mod;
x = x * x % mod;
n = n >> 1;
}
ans %= mod;
return ans;
}
ll modinv2(ll a, ll mod) {
ll b = mod, u = 1, v = 0;
while (b) {
ll t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
u %= mod;
if (u < 0)
u += mod;
return u;
}
ll divide_int(ll a, ll b) {
if (b < 0)
a = -a, b = -b;
return (a >= 0 ? a / b : (a - b + 1) / b);
}
const int MOD = 1000000007;
// const int MOD = 998244353;
using mint = Mod_Int<MOD>;
mint mpow(mint x, ll n) {
bool rev = n < 0;
n = abs(n);
mint ans = 1;
while (n != 0) {
if (n & 1)
ans *= x;
x *= x;
n = n >> 1;
}
return (rev ? ans.inverse() : ans);
}
// ----- library -------
vector<int> z_algorithm(const string &s) {
vector<int> prefix(s.size());
for (int i = 1, j = 0; i < s.size(); i++) {
if (i + prefix[i - j] < j + prefix[j]) {
prefix[i] = prefix[i - j];
} else {
int k = max(0, j + prefix[j] - i);
while (i + k < s.size() && s[k] == s[i + k])
++k;
prefix[i] = k;
j = i;
}
}
prefix[0] = (int)s.size();
return prefix;
}
template <typename Operator_Monoid>
struct Dual_Segment_Tree {
using H = function<Operator_Monoid(Operator_Monoid, Operator_Monoid)>;
int n, height;
vector<Operator_Monoid> lazy;
const H h;
const Operator_Monoid e2;
// h(h(p,q),r) = h(p,h(q,r)), h(e2,p) = h(p,e2) = p
Dual_Segment_Tree(int m, const H &h, const Operator_Monoid &e2) : h(h), e2(e2) {
n = 1, height = 0;
while (n < m)
n <<= 1, height++;
lazy.assign(2 * n, e2);
}
inline void eval(int i) {
if (i < n && lazy[i] != e2) {
lazy[2 * i] = h(lazy[2 * i], lazy[i]);
lazy[2 * i + 1] = h(lazy[2 * i + 1], lazy[i]);
lazy[i] = e2;
}
}
inline void thrust(int i) {
for (int j = height; j > 0; j--)
eval(i >> j);
}
void apply(int l, int r, const Operator_Monoid &x) {
l = max(l, 0), r = min(r, n);
if (l >= r)
return;
l += n, r += n;
thrust(l), thrust(r - 1);
while (l < r) {
if (l & 1)
lazy[l] = h(lazy[l], x), l++;
if (r & 1)
r--, lazy[r] = h(lazy[r], x);
l >>= 1, r >>= 1;
}
}
Operator_Monoid get(int i) {
thrust(i + n);
return lazy[i + n];
}
Operator_Monoid operator[](int i) {
return get(i);
}
};
// ----- library -------
int main() {
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
cout << fixed << setprecision(15);
string s;
cin >> s;
int n = sz(s);
auto pre = z_algorithm(s);
minheap<int> que;
vector<vector<int>> ev(n + 1), bo(n + 1);
rep(i, n + 1) bo[i].eb(i + 1);
rep2(i, 1, n) ev[i].eb(i);
rep(i, n) {
for (auto &e : ev[i])
que.push(e);
while (sz(que)) {
auto now = que.top();
if (pre[i] >= now) {
que.pop();
bo[now].eb(i + now);
ev[i + now].eb(now);
} else
break;
}
}
rep(i, n + 1) bo[i].eb(n + 1);
Dual_Segment_Tree<int> seg(n + 1, [](int a, int b) { return max(a, b); }, 0);
rep(i, n) {
int now = seg[i];
rep(j, sz(bo[i]) - 1) seg.apply(bo[i][j], bo[i][j + 1], now + max(0, (i - 1) * j - 1));
}
cout << n - seg[n] << endl;
}
torisasami4