結果

問題 No.2162 Copy and Paste 2
ユーザー torisasami4torisasami4
提出日時 2022-12-13 12:25:25
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 809 ms / 7,000 ms
コード長 8,647 bytes
コンパイル時間 3,650 ms
コンパイル使用メモリ 228,800 KB
実行使用メモリ 51,884 KB
最終ジャッジ日時 2024-04-24 23:04:08
合計ジャッジ時間 15,855 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 139 ms
29,868 KB
testcase_07 AC 150 ms
30,060 KB
testcase_08 AC 303 ms
36,768 KB
testcase_09 AC 350 ms
35,788 KB
testcase_10 AC 374 ms
35,156 KB
testcase_11 AC 428 ms
38,444 KB
testcase_12 AC 474 ms
40,884 KB
testcase_13 AC 577 ms
45,876 KB
testcase_14 AC 324 ms
37,300 KB
testcase_15 AC 366 ms
38,792 KB
testcase_16 AC 362 ms
38,888 KB
testcase_17 AC 544 ms
45,700 KB
testcase_18 AC 750 ms
51,116 KB
testcase_19 AC 684 ms
48,988 KB
testcase_20 AC 632 ms
47,904 KB
testcase_21 AC 371 ms
39,636 KB
testcase_22 AC 366 ms
38,932 KB
testcase_23 AC 126 ms
29,880 KB
testcase_24 AC 805 ms
51,168 KB
testcase_25 AC 809 ms
51,292 KB
testcase_26 AC 785 ms
51,884 KB
testcase_27 AC 800 ms
51,164 KB
testcase_28 AC 730 ms
49,608 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < int(n); i++)
#define per(i, n) for (int i = (n)-1; 0 <= i; i--)
#define rep2(i, l, r) for (int i = (l); i < int(r); i++)
#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
template <typename T>
void print(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++)
        cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty())
        cout << '\n';
}
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template <typename T>
bool chmax(T &x, const T &y) {
    return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
    return (x > y) ? (x = y, true) : false;
}
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T>
using maxheap = std::priority_queue<T>;
template <typename T>
int lb(const vector<T> &v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

// __int128_t gcd(__int128_t a, __int128_t b) {
//     if (a == 0)
//         return b;
//     if (b == 0)
//         return a;
//     __int128_t cnt = a % b;
//     while (cnt != 0) {
//         a = b;
//         b = cnt;
//         cnt = a % b;
//     }
//     return b;
// }

long long extGCD(long long a, long long b, long long &x, long long &y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    long long d = extGCD(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

struct UnionFind {
    vector<int> data;
    int num;

    UnionFind(int sz) {
        data.assign(sz, -1);
        num = sz;
    }

    bool unite(int x, int y) {
        x = find(x), y = find(y);
        if (x == y)
            return (false);
        if (data[x] > data[y])
            swap(x, y);
        data[x] += data[y];
        data[y] = x;
        num--;
        return (true);
    }

    int find(int k) {
        if (data[k] < 0)
            return (k);
        return (data[k] = find(data[k]));
    }

    int size(int k) {
        return (-data[find(k)]);
    }

    bool same(int x, int y) {
        return find(x) == find(y);
    }

    int operator[](int k) {
        return find(k);
    }
};

template <int mod>
struct Mod_Int {
    int x;

    Mod_Int() : x(0) {
    }

    Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {
    }

    static int get_mod() {
        return mod;
    }

    Mod_Int &operator+=(const Mod_Int &p) {
        if ((x += p.x) >= mod)
            x -= mod;
        return *this;
    }

    Mod_Int &operator-=(const Mod_Int &p) {
        if ((x += mod - p.x) >= mod)
            x -= mod;
        return *this;
    }

    Mod_Int &operator*=(const Mod_Int &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    Mod_Int &operator/=(const Mod_Int &p) {
        *this *= p.inverse();
        return *this;
    }

    Mod_Int &operator++() {
        return *this += Mod_Int(1);
    }

    Mod_Int operator++(int) {
        Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Mod_Int &operator--() {
        return *this -= Mod_Int(1);
    }

    Mod_Int operator--(int) {
        Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Mod_Int operator-() const {
        return Mod_Int(-x);
    }

    Mod_Int operator+(const Mod_Int &p) const {
        return Mod_Int(*this) += p;
    }

    Mod_Int operator-(const Mod_Int &p) const {
        return Mod_Int(*this) -= p;
    }

    Mod_Int operator*(const Mod_Int &p) const {
        return Mod_Int(*this) *= p;
    }

    Mod_Int operator/(const Mod_Int &p) const {
        return Mod_Int(*this) /= p;
    }

    bool operator==(const Mod_Int &p) const {
        return x == p.x;
    }

    bool operator!=(const Mod_Int &p) const {
        return x != p.x;
    }

    Mod_Int inverse() const {
        assert(*this != Mod_Int(0));
        return pow(mod - 2);
    }

    Mod_Int pow(long long k) const {
        Mod_Int now = *this, ret = 1;
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1)
                ret *= now;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Mod_Int &p) {
        return os << p.x;
    }

    friend istream &operator>>(istream &is, Mod_Int &p) {
        long long a;
        is >> a;
        p = Mod_Int<mod>(a);
        return is;
    }
};

ll mpow2(ll x, ll n, ll mod) {
    ll ans = 1;
    x %= mod;
    while (n != 0) {
        if (n & 1)
            ans = ans * x % mod;
        x = x * x % mod;
        n = n >> 1;
    }
    ans %= mod;
    return ans;
}

ll modinv2(ll a, ll mod) {
    ll b = mod, u = 1, v = 0;
    while (b) {
        ll t = a / b;
        a -= t * b;
        swap(a, b);
        u -= t * v;
        swap(u, v);
    }
    u %= mod;
    if (u < 0)
        u += mod;
    return u;
}

ll divide_int(ll a, ll b) {
    if (b < 0)
        a = -a, b = -b;
    return (a >= 0 ? a / b : (a - b + 1) / b);
}

const int MOD = 1000000007;
// const int MOD = 998244353;
using mint = Mod_Int<MOD>;

mint mpow(mint x, ll n) {
    bool rev = n < 0;
    n = abs(n);
    mint ans = 1;
    while (n != 0) {
        if (n & 1)
            ans *= x;
        x *= x;
        n = n >> 1;
    }
    return (rev ? ans.inverse() : ans);
}

// ----- library -------
vector<int> z_algorithm(const string &s) {
    vector<int> prefix(s.size());
    for (int i = 1, j = 0; i < s.size(); i++) {
        if (i + prefix[i - j] < j + prefix[j]) {
            prefix[i] = prefix[i - j];
        } else {
            int k = max(0, j + prefix[j] - i);
            while (i + k < s.size() && s[k] == s[i + k])
                ++k;
            prefix[i] = k;
            j = i;
        }
    }
    prefix[0] = (int)s.size();
    return prefix;
}
template <typename Operator_Monoid>
struct Dual_Segment_Tree {
    using H = function<Operator_Monoid(Operator_Monoid, Operator_Monoid)>;
    int n, height;
    vector<Operator_Monoid> lazy;
    const H h;
    const Operator_Monoid e2;

    // h(h(p,q),r) = h(p,h(q,r)), h(e2,p) = h(p,e2) = p

    Dual_Segment_Tree(int m, const H &h, const Operator_Monoid &e2) : h(h), e2(e2) {
        n = 1, height = 0;
        while (n < m)
            n <<= 1, height++;
        lazy.assign(2 * n, e2);
    }

    inline void eval(int i) {
        if (i < n && lazy[i] != e2) {
            lazy[2 * i] = h(lazy[2 * i], lazy[i]);
            lazy[2 * i + 1] = h(lazy[2 * i + 1], lazy[i]);
            lazy[i] = e2;
        }
    }

    inline void thrust(int i) {
        for (int j = height; j > 0; j--)
            eval(i >> j);
    }

    void apply(int l, int r, const Operator_Monoid &x) {
        l = max(l, 0), r = min(r, n);
        if (l >= r)
            return;
        l += n, r += n;
        thrust(l), thrust(r - 1);
        while (l < r) {
            if (l & 1)
                lazy[l] = h(lazy[l], x), l++;
            if (r & 1)
                r--, lazy[r] = h(lazy[r], x);
            l >>= 1, r >>= 1;
        }
    }

    Operator_Monoid get(int i) {
        thrust(i + n);
        return lazy[i + n];
    }

    Operator_Monoid operator[](int i) {
        return get(i);
    }
};
// ----- library -------

int main() {
    ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    cout << fixed << setprecision(15);

    string s;
    cin >> s;
    int n = sz(s);
    auto pre = z_algorithm(s);
    minheap<int> que;
    vector<vector<int>> ev(n + 1), bo(n + 1);
    rep(i, n + 1) bo[i].eb(i + 1);
    rep2(i, 1, n) ev[i].eb(i);
    rep(i, n) {
        for (auto &e : ev[i])
            que.push(e);
        while (sz(que)) {
            auto now = que.top();
            if (pre[i] >= now) {
                que.pop();
                bo[now].eb(i + now);
                ev[i + now].eb(now);
            } else
                break;
        }
    }
    rep(i, n + 1) bo[i].eb(n + 1);
    Dual_Segment_Tree<int> seg(n + 1, [](int a, int b) { return max(a, b); }, 0);
    rep(i, n) {
        int now = seg[i];
        rep(j, sz(bo[i]) - 1) seg.apply(bo[i][j], bo[i][j + 1], now + max(0, (i - 1) * j - 1));
    }
    cout << n - seg[n] << endl;
}
0