結果
| 問題 |
No.2162 Copy and Paste 2
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2022-12-15 02:16:22 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 9,984 bytes |
| コンパイル時間 | 12,312 ms |
| コンパイル使用メモリ | 284,608 KB |
| 最終ジャッジ日時 | 2025-02-09 12:25:58 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 14 WA * 11 TLE * 1 |
ソースコード
// #define _GLIBCXX_DEBUG
#pragma GCC optimize ( "O3" )
#pragma GCC target ( "avx" )
#include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define ASSERT( A , MIN , MAX ) assert( MIN <= A && A <= MAX )
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define GETLINE( A ) string A; getline( cin , A )
#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define COUT( ANSWER ) cout << ( ANSWER ) << "\n";
#define RETURN( ANSWER ) COUT( ANSWER ); QUIT
#define DOUBLE( PRECISION , ANSWER ) cout << fixed << setprecision( PRECISION ) << ( ANSWER ) << "\n"; QUIT
#define POWER( ANSWER , ARGUMENT , EXPONENT ) \
TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \
{ \
TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \
TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \
{ \
TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ARGUMENT ) % MODULO ) % MODULO; \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define FACTORIAL_MOD( ANSWER , ANSWER_INV , MAX_I , LENGTH , MODULO ) \
ll ANSWER[LENGTH]; \
ll ANSWER_INV[LENGTH]; \
{ \
ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \
FOREQ( i , 1 , MAX_I ){ \
ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= MODULO; \
} \
POWER_MOD( FACTORIAL_MAX_INV , ANSWER[MAX_I] , MODULO - 2 , MODULO ); \
ANSWER_INV[MAX_I] = FACTORIAL_MAX_INV; \
FOREQINV( i , MAX_I - 1 , 0 ){ \
ANSWER_INV[i] = ( FACTORIAL_MAX_INV *= i + 1 ) %= MODULO; \
} \
} \
\
// 通常の二分探索
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
ll ANSWER = MAXIMUM; \
{ \
ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \
} else { \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
} \
while( VARIABLE_FOR_BINARY_SEARCH_L != ANSWER ){ \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \
break; \
} else { \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \
} else { \
VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \
} \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
} \
} \
} \
\
// 二進法の二分探索
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
ll ANSWER = MINIMUM; \
{ \
ll VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 = 1; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( MAXIMUM ) - ANSWER; \
while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 <= VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ){ \
VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 *= 2; \
} \
VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2; \
ll VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \
while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 != 0 ){ \
ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 + VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2; \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( TARGET ) - ( EXPRESSION ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \
break; \
} else if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \
VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2 = ANSWER; \
} \
VARIABLE_FOR_POWER_FOR_BINARY_SEARCH_2 /= 2; \
} \
ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH_2; \
} \
\
template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : - a; }
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - ( - a - 1 ) % p - 1; }
// 区間最大値取得可能なBITを頑張って実装したのですが1点更新しかできないパターンだった、
// というのを2回繰り返してとても疲弊したので、遅延セグ木の実装は今回諦めてペタリします。。
#include <atcoder/lazysegtree>
using namespace atcoder;
inline CEXPR( int , bound , 200000 );
// laze_segtree用のデータ
inline int op( int m , int n ) { return m < n ? n : m;}
// 0は負数も考える設定だとunitでないことに注意
inline int unit() { return -bound-1; }
int main()
{
UNTIE;
CIN( string , S );
int size = S.size();
ASSERT( size , 1 , bound );
// i >= j に対し
// a(i,j) := (TがSの始切片かつ|T|=iかつ|U|=jとなる時の最小操作数)
// i > jかつUがTの終切片 -> a(i,j) = min( a(i-1,j) + 1 , a(i-j,j) + 1 )
// i > jかつUがTの終切片でない -> a(i,j) = a(i-1,j) + 1
// a(i,i) = min( int j = 0 ; j < i ; j++ ) a(i,j) + 1
// dp(i,j) := i - a(i,j)
// i > jかつ(Sの長さiの始切片の長さjの終切片がSの長さjの始切片) -> dp(i,j) = max( dp(i-1,j) , dp(i-j,j)+(j-1) )
// i > jかつ(Sの長さiの始切片の長さjの終切片がSの長さjの始切片) -> dp(i,j) = dp(i-1,j)
// dp(i,i) = max( int j = 0 ; j < i ; j++ ) dp(i,j) - 1
string a = "a";
string b = "b";
string init = S.substr( 0 , 1 );
// Sの先頭から何文字目まで同じ文字か
int length_init = size;
FOR( i , 0 , size ){
if( S.substr( i , 1 ) != init ){
length_init = i;
break;
}
}
// Sの長さi+jの始切片の長さjの終切片がSの長さjの始切片と一致するようなj<=iの最大値
static int j_update[bound + 1];
// 再帰の都合まずj<=iという条件を無視して計算する
j_update[0] = size;
int j_lim;
FOREQ( i , 1 , size ){
int& j_update_i_prev = j_update[i-1];
int& j_update_i = j_update[i];
if( j_update_i_prev > 0 && length_init > 1 ){
if( length_init >= j_update_i_prev ){
j_update_i = j_update_i_prev - 1;
} else {
j_update_i = length_init - 1;
}
} else {
j_update_i = i;
j_lim = size - i;
FOR( j , 0 , j_lim ){
if( S.substr( j , 1 ) != S.substr( i + j , 1 ) ){
j_update_i = j;
break;
}
}
}
}
// 最大値を記録したjごとにiを格納
static set<int> i_update[bound + 1] = {};
// 最大値を記録したjを渡らせてiを格納
set<int> i_update_total{};
// 条件j<=iを反映
FOREQ( i , 0 , size ){
int& j_update_i = j_update[i];
if( j_update_i > i ){
j_update_i = i;
}
if( j_update_i > 0 ){
i_update[j_update_i].insert( i );
i_update_total.insert( i );
}
}
// max_{j'<=j} dp(i,j')の値を(j,i)に関する辞書式順序で計算してopt[i]に格納
lazy_segtree<int,op,unit,int,op,op,unit> opt( size + 1 );
// a(i,0)=iよりd(i,0) = 0
// unitが入ってしまっているので0で初期化が必要
opt.apply( 0 , size + 1 , 0 );
int current_update , i;
set<int>::iterator itr_i , end_i;
bool updating;
// 最後が操作Cであることはないのでsize未満までで良い
FOR( j , 1 , size ){
// 右辺はmax_{j'<j} dp(j,j') - 1 = dp(j,j)
current_update = opt.get( j ) - 1;
i = j;
end_i = i_update_total.end();
updating = true;
while( updating ){
current_update += j - 1;
itr_i = i_update_total.lower_bound( i );
if( updating = ( itr_i != end_i ) ){
i = *itr_i + j;
if( updating = ( i <= size ) ){
opt.apply( i , size + 1 , current_update );
}
}
}
set<int>& i_update_j = i_update[j];
FOR_ITR( i_update_j , itr_j , end_j ){
// dp(i,j+1)以降はSの長さi+jの始切片の長さjの終切片がSの長さjの始切片と一致することの寄与がない
i_update_total.erase( *itr_j );
}
}
// size - ( max_{j'<=size-1} dp(size,j') ) = min_{j'<size} a(size,j');
RETURN( size - opt.get( size ) );
}