結果

問題 No.2151 3 on Torus-Lohkous
ユーザー ecotteaecottea
提出日時 2022-12-17 02:06:06
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 20,669 bytes
コンパイル時間 4,703 ms
コンパイル使用メモリ 258,980 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-11-16 08:20:05
合計ジャッジ時間 5,466 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 8 ms
5,248 KB
testcase_01 WA -
testcase_02 WA -
testcase_03 AC 9 ms
5,248 KB
testcase_04 AC 9 ms
5,248 KB
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 AC 9 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004004004004004LL;
double EPS = 1e-12;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了

// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

// 手元環境(Visual Studio)
#ifdef _MSC_VER
#include "local.hpp"
// 提出用(gcc)
#else
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_list2D(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif

#endif // 折りたたみ用


//--------------AtCoder 専用--------------
#include <atcoder/all>
using namespace atcoder;

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>;
//----------------------------------------

int naive(int h, int w) {
	int W = h * w;
	
	auto check = [&](int set) {
		dsu d(W + 1), dh(W + 1), dw(W + 1);
		
		rep(i, h) rep(j, w) {
			int ij = i * w + j;
			if (!(set & (1 << ij))) {
				d.merge(ij, W);
				dh.merge(ij, W);
				dw.merge(ij, W);
				continue;
			}

			int ij_h = ((i + 1) % h) * w + j;
			if (set & (1 << ij_h)) {
				d.merge(ij, ij_h);
				dh.merge(ij, ij_h);
			}

			int ij_w = i * w + ((j + 1) % w);
			if (set & (1 << ij_w)) {
				d.merge(ij, ij_w);
				dw.merge(ij, ij_w);
			}
		}

		bool fc = true;
		repe(g, d.groups()) {
			if (d.same(g[0], W)) continue;

			if (fc) fc = false;
			else return false;
		}
		if (fc) return false;

		repe(gh, dh.groups()) {
			if (d.same(gh[0], W)) continue;

			if (sz(gh) != 3) return false;
		}

		repe(gw, dw.groups()) {
			if (d.same(gw[0], W)) continue;

			if (sz(gw) != 3) return false;
		}

		return true;
	};

	int res = 0;

	repb(set, W) {
		if (check(set)) {
			dump("---------------");
			rep(i, h) {
				rep(j, w) {
					int ij = i * w + j;
					cout << ((set >> ij) & 1 ? "#" : ".");
				}
				cout << endl;
			}

			res++;
		}
	}

	return res;
}


void zikken() {
	dump(naive(4, 4));
}
/*
---------------
ブロック : 16 通り
###.
###.
###.
....
---------------
帯 : 8 通り
.###
#.##
##.#
###.
---------------
じゅうたん : 16 通り
#.##
.###
##.#
###.

4 4 -> 40
4 5 -> 20
4 6 -> 24
5 5 -> 35
*/


//【形式的冪級数(mod 998244353)】
/*
* MFPS() : O(1)
*	零多項式 f = 0 で初期化する.
*
* MFPS(mint c0) : O(1)
*	定数多項式 f = c0 で初期化する.
*
* MFPS(mint c0, int n) : O(n)
*	n 次未満の項をもつ定数多項式 f = c0 で初期化する.
*
* MFPS(vm c) : O(n)
*	f(x) = c[0] + c[1] x + ... + c[n - 1] x^(n-1) で初期化する.
*
* c + f, f + c : O(1)	f + g : O(n)
* f - c : O(1)			c - f, f - g, -f : O(n)
* c * f, f * c : O(n)	f * g : O(n log n)		f * g_sp : O(n k)(k : g の項数)
* f / c : O(n)			f / g : O(n log n)		f / g_sp : O(n k)(k : g の項数)
*	形式的冪級数としての和,差,積,商の結果を返す.
*	g_sp はスパース多項式であり,{次数, 係数} の次数昇順の組の vector で表す.
*	制約 : 商では g(0) != 0
*
* MFPS f.inv(int d) : O(n log n)
*	1 / f mod x^d を返す.
*	制約 : f(0) != 0
*
* MFPS f.quotient(MFPS g) : O(n log n)
* MFPS f.reminder(MFPS g) : O(n log n)
* pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n log n)
*	多項式としての f を g で割った商,余り,商と余りの組を返す.
*	制約 : g の最高次の係数は 0 でない
*
* int f.deg(), int f.size() : O(1)
*	多項式 f の次数[項数]を返す.
*
* MFPS::monomial(int d) : O(d)
*	単項式 x^d を返す.
*
* mint f.assign(mint c) : O(n)
*	多項式 f の不定元 x に c を代入した値を返す.
*
* f.resize(int d) : O(1)
*	mod x^d をとる.
*
* f.resize() : O(n)
*	不要な高次の項を削る.
*
* f >> d, f << d : O(n)
*	係数列を d だけ右[左]シフトした多項式を返す.
*  (右シフトは x^d の乗算,左シフトは x^d で割った商と等価)
*
* MFPS power_mod(MFPS f, ll d, MFPS g) : O(m log m log d) (m = deg g)
*	f(x)^d mod g(x) を返す.
*/
struct MFPS {
	using SMFPS = vector<pair<int, mint>>;

	int n; // 係数の個数(次数 + 1)
	vm c; // 係数列

	// コンストラクタ(0,定数,係数列で初期化)
	MFPS() : n(0) {}
	MFPS(const mint& c0) : n(1), c({ c0 }) {}
	MFPS(const int& c0) : n(1), c({ mint(c0) }) {}
	MFPS(const mint& c0, int d) : n(d), c(n) { c[0] = c0; }
	MFPS(const int& c0, int d) : n(d), c(n) { c[0] = c0; }
	MFPS(const vm& c_) : n(sz(c_)), c(c_) {}
	MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; }

	// 代入
	MFPS(const MFPS& f) = default;
	MFPS& operator=(const MFPS& f) = default;
	MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; }

	// 比較
	bool operator==(const MFPS& g) const { return c == g.c; }
	bool operator!=(const MFPS& g) const { return c != g.c; }

	// アクセス
	mint const& operator[](int i) const { return c[i]; }
	mint& operator[](int i) { return c[i]; }

	// 次数
	int deg() const { return n - 1; }
	int size() const { return n; }

	// 加算
	MFPS& operator+=(const MFPS& g) {
		if (n >= g.n) rep(i, g.n) c[i] += g.c[i];
		else {
			rep(i, n) c[i] += g.c[i];
			repi(i, n, g.n - 1)	c.push_back(g.c[i]);
			n = g.n;
		}
		return *this;
	}
	MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; }

	// 定数加算
	MFPS& operator+=(const mint& sc) {
		if (n == 0) { n = 1; c = { sc }; }
		else { c[0] += sc; }
		return *this;
	}
	MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; }
	friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; }
	MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; }
	MFPS operator+(const int& sc) const { return MFPS(*this) += sc; }
	friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; }

	// 減算
	MFPS& operator-=(const MFPS& g) {
		if (n >= g.n) rep(i, g.n) c[i] -= g.c[i];
		else {
			rep(i, n) c[i] -= g.c[i];
			repi(i, n, g.n - 1) c.push_back(-g.c[i]);
			n = g.n;
		}
		return *this;
	}
	MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; }

	// 定数減算
	MFPS& operator-=(const mint& sc) { *this += -sc; return *this; }
	MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; }
	friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); }
	MFPS& operator-=(const int& sc) { *this += -sc; return *this; }
	MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; }
	friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); }

	// 加法逆元
	MFPS operator-() const { return MFPS(*this) *= -1; }

	// 定数倍
	MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; }
	MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; }
	friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; }
	MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; }
	MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; }
	friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; }

	// 右からの定数除算
	MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; }
	MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; }
	MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; }
	MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; }

	// 積
	MFPS& operator*=(const MFPS& g) { c = convolution(c, g.c); n = sz(c); return *this; }
	MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; }

	// 除算
	MFPS inv(int d) const {
		// 参考:https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
		// verify : https://judge.yosupo.jp/problem/inv_of_formal_power_series

		//【方法】
		// 1 / f mod x^d を求めることは,
		//		f g = 1 (mod x^d)
		// なる g を求めることである.
		// この d の部分を 1, 2, 4, ..., 2^i と倍々にして求めていく.
		//
		// d = 1 のときについては
		//		g = 1 / f[0] (mod x^1)
		// である.
		//
		// 次に,
		//		g = h (mod x^k)
		// が求まっているとして
		//		g mod x^(2 k)
		// を求める.最初の式を変形していくことで
		//		g - h = 0 (mod x^k)
		//		⇒ (g - h)^2 = 0 (mod x^(2 k))
		//		⇔ g^2 - 2 g h + h^2 = 0 (mod x^(2 k))
		//		⇒ f g^2 - 2 f g h + f h^2 = 0 (mod x^(2 k))
		//		⇔ g - 2 h + f h^2 = 0 (mod x^(2 k))  (f g = 1 (mod x^d) より)
		//		⇔ g = (2 - f h) h (mod x^(2 k))
		// を得る.
		//
		// この手順を d <= 2^i となる i まで繰り返し,d 次以上の項を削除すればよい.

		Assert(c[0] != 0);

		MFPS g(c[0].inv());
		for (int k = 1; k < d; k *= 2) {
			g = (2 - *this * g) * g;
			g.resize(2 * k);
		}

		return g.resize(d);
	}
	MFPS& operator/=(const MFPS& g) { return *this *= g.inv(n); }
	MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; }

	// 余り付き除算
	MFPS quotient(const MFPS& g) const {
		// 参考 : https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
		// verify : https://judge.yosupo.jp/problem/division_of_polynomials

		//【方法】
		// f(x) = g(x) q(x) + r(x) となる q(x) を求める.
		// f の次数は n - 1, g の次数は m - 1 とする.(n >= m)
		// 従って q の次数は n - m,r の次数は m - 2 となる.
		// 
		// f^R で f の係数列を逆順にした多項式を表す.すなわち
		//		f^R(x) := f(1/x) x^(n-1)
		// である.他の多項式も同様とする.
		//
		// 最初の式で x → 1/x と置き換えると,
		//		f(1/x) = g(1/x) q(1/x) + r(1/x)
		//		⇔ f(1/x) x^(n-1) = g(1/x) q(1/x) x^(n-1) + r(1/x) x^(n-1)
		//		⇔ f(1/x) x^(n-1) = g(1/x) x^(m-1) q(1/x) x^(n-m) + r(1/x) x^(m-2) x^(n-m+1)
		//		⇔ f^R(x) = g^R(x) q^R(x) + r^R(x) x^(n-m+1)
		//		⇒ f^R(x) = g^R(x) q^R(x) (mod x^(n-m+1))
		// 	    ⇒ q^R(x) = f^R(x) / g^R(x)  (mod x^(n-m+1))
		// を得る.
		// 	   
		// これで q を mod x^(n-m+1) で正しく求めることができることになるが,
		// q の次数は n - m であったから,q 自身を正しく求めることができた.

		if (n < g.n) return MFPS();
		return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev();
	}

	MFPS reminder(const MFPS& g) const {
		// verify : https://judge.yosupo.jp/problem/division_of_polynomials

		return (*this - this->quotient(g) * g).resize(g.n - 1);
	}

	pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const {
		// verify : https://judge.yosupo.jp/problem/division_of_polynomials

		pair<MFPS, MFPS> res;
		res.first = this->quotient(g);
		res.second = (*this - res.first * g).resize(g.n - 1);
		return res;
	}

	// スパース積
	MFPS& operator*=(const SMFPS& g) {
		// g の定数項だけ例外処理
		auto it0 = g.begin();
		mint g0 = 0;
		if (it0->first == 0) {
			g0 = it0->second;
			it0++;
		}

		// 後ろからインライン配る DP
		repir(i, n - 1, 0) {
			// 上位項に係数倍して配っていく.
			for (auto it = it0; it != g.end(); it++) {
				int j; mint gj;
				tie(j, gj) = *it;

				if (i + j >= n) break;

				c[i + j] += c[i] * gj;
			}

			// 定数項は最後に配るか消去しないといけない.
			c[i] *= g0;
		}

		return *this;
	}
	MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; }

	// スパース商
	MFPS& operator/=(const SMFPS& g) {
		// g の定数項だけ例外処理
		auto it0 = g.begin();
		Assert(it0->first == 0 && it0->second != 0);
		mint g0_inv = it0->second.inv();
		it0++;

		// 前からインライン配る DP(後ろに累積効果あり)
		rep(i, n) {

			// 定数項は最初に配らないといけない.
			c[i] *= g0_inv;

			// 上位項に係数倍して配っていく.
			for (auto it = it0; it != g.end(); it++) {
				int j; mint gj;
				tie(j, gj) = *it;

				if (i + j >= n) break;

				c[i + j] -= c[i] * gj;
			}
		}

		return *this;
	}
	MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; }

	// 係数反転
	MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; }

	// 単項式
	static MFPS monomial(int d) {
		MFPS mono(0, d + 1);
		mono[d] = 1;
		return mono;
	}

	// 不要な高次項の除去
	MFPS& resize() {
		// 最高次の係数が非 0 になるまで削る.
		while (n > 0 && c[n - 1] == 0) {
			c.pop_back();
			n--;
		}
		return *this;
	}

	// x^d 以上の項を除去する.
	MFPS& resize(int d) {
		n = d;
		c.resize(d);
		return *this;
	}

	// 不定元への代入
	mint assign(const mint& x) const {
		mint val = 0;
		repir(i, n - 1, 0) val = val * x + c[i];
		return val;
	}

	// 係数のシフト
	MFPS& operator>>=(int d) {
		n += d;
		c.insert(c.begin(), d, 0);
		return *this;
	}
	MFPS& operator<<=(int d) {
		n -= d;
		if (n <= 0) { c.clear(); n = 0; }
		else c.erase(c.begin(), c.begin() + d);
		return *this;
	}
	MFPS operator>>(int d) const { return MFPS(*this) >>= d; }
	MFPS operator<<(int d) const { return MFPS(*this) <<= d; }

	// 累乗の剰余
	friend MFPS power_mod(const MFPS& f, ll d, const MFPS& g) {
		MFPS res(1), pow2(f);
		while (d > 0) {
			if (d & 1LL) res = (res * pow2).reminder(g);
			pow2 = (pow2 * pow2).reminder(g);
			d /= 2;
		}
		return res;
	}

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const MFPS& f) {
		if (f.n == 0) os << 0;
		else {
			rep(i, f.n) {
				os << f[i].val() << "x^" << i;
				if (i < f.n - 1) os << " + ";
			}
		}
		return os;
	}
#endif
};


//【線形漸化式の発見】O(n^2)
/*
* 与えられた数列 a[0..n) に対し,
*		a[i] = Σj=[0..d) c[j] a[i-1-j]  (∀i∈[d..n))
* を満たす d を返し,c[0..d) を c に格納する.
*/
int berlekamp_massey(const vm& a, vm& c) {
	// 参考 : https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm
	// verify : https://judge.yosupo.jp/problem/find_linear_recurrence

	MFPS S(a), C(1), B(1);
	int N = sz(a), m = 1; mint b = 1;

	rep(n, N) {
		mint d = 0;
		rep(i, sz(C)) d += C[i] * S[n - i];

		if (d == 0) {
			m++;
		}
		else if (2 * C.deg() <= n) {
			MFPS T(C);
			C -= d * b.inv() * (B >> m);
			B = T;
			b = d;
			m = 1;
		}
		else {
			C -= d * b.inv() * (B >> m);
			m++;
		}
	}
	c = (-C << 1).c;

	return C.deg();
}


void zikken2() {
	int N = 50;
	vvm res(2, vm(N));

	repi(n, 4, N - 1) {
		vi a;
		
		function<void()> rf = [&]() {
			if (a.empty()) {
				repi(i, 0, n - 1) {
					a.push_back(i);
					rf();
					a.pop_back();
				}
			}
			else {
				int d = (a.front() + n) - a.back();
				if (d % 3 == 2 && d >= 5) {
					res[sz(a) % 2][n]++;
				}
				
				for (int i = a.back() + 5; i < n; i += 3) {
					a.push_back(i);
					rf();
					a.pop_back();
				}
			}
		};

		rf();
	}

	dump_list(res[0]);

	vm c;
	int d = berlekamp_massey(res[0], c);
	dump(d); dump_list(c);

	dump("---------------");

	dump_list(res[1]);

	d = berlekamp_massey(res[1], c);
	dump(d); dump_list(c);


	exit(0);
}
/*
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 13, 0, 0, 24, 0, 0, 38, 5, 0, 55, 23, 0, 75, 65, 0, 98, 145, 5, 124, 280, 33, 153, 490, 126, 185, 798, 364, 225, 1230, 882, 301, 1815, 1890, 506, 2585, 3696, 1078}
14
{0, 0, 3, 0, 0, 998244350, 0, 0, 1, 1, 0, 0, 998244352, 0}
---------------
{0, 0, 0, 0, 0, 5, 0, 0, 8, 0, 0, 11, 0, 0, 14, 5, 0, 17, 18, 0, 20, 42, 0, 23, 80, 5, 26, 135, 28, 29, 210, 93, 32, 308, 238, 40, 432, 518, 76, 585, 1008, 205, 770, 1806, 572, 995, 3036, 1457, 1296, 4851}
10
{0, 0, 2, 0, 0, 998244352, 0, 0, 0, 1}
*/


int N = (int)1e5;
vm dp0{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 13, 0, 0, 24, 0, 0, 38, 5, 0, 55, 23, 0, 75, 65, 0, 98, 145, 5, 124, 280, 33, 153, 490, 126, 185, 798, 364, 225, 1230, 882, 301, 1815, 1890, 506, 2585, 3696, 1078 };
vm dp1{ 0, 0, 0, 0, 0, 5, 0, 0, 8, 0, 0, 11, 0, 0, 14, 5, 0, 17, 18, 0, 20, 42, 0, 23, 80, 5, 26, 135, 28, 29, 210, 93, 32, 308, 238, 40, 432, 518, 76, 585, 1008, 205, 770, 1806, 572, 995, 3036, 1457, 1296, 4851 };


void init() {
	dp0.resize(N + 1);
	int d = 14;
	vm c = { 0, 0, 3, 0, 0, 998244350, 0, 0, 1, 1, 0, 0, 998244352, 0 };

	repi(i, d + 2, N) {
		dp0[i] = 0;
		rep(j, d) dp0[i] += c[j] * dp0[i - 1 - j];
	}

	dp1.resize(N + 1);
	d = 10;
	c = vm{ 0, 0, 2, 0, 0, 998244352, 0, 0, 0, 1 };

	repi(i, d + 2, N) {
		dp1[i] = 0;
		rep(j, d) dp1[i] += c[j] * dp1[i - 1 - j];
	}

//	rep(i, 30) cerr << dp0[i] << " ";
//	cerr << endl;
}


mint solve(int h, int w) {
	int g = gcd(h, w);
	
	mint res;

	// ブロック
	res += mint(h) * w;

	// 帯
	if (g >= 4) {
		res += g * 2;
	}

	// いびつな帯
	if (g >= 4 && g % 3 == 0) {
		res += g * 2 * 2 * 3;
	}

	// じゅうたん
	if (h % 4 == 0 && w % 4 == 0) {
		res += 16;
	}

	// 交差
	if (g % 2 == 0) {
		res += dp0[g / 2] * 2 * dp0[g / 2] * 2;
		res += dp1[g / 2] * 2 * dp1[g / 2] * 2;
	}

	return res;
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");
	
//	zikken2();
//	dump(naive(4, 6)); return 0;

	init();
//	mint_to_frac();

	int t;
	cin >> t;

	rep(hoge, t) {
		int h, w;
		cin >> h >> w;

		cout << solve(h, w) << endl;
	}
}
0