結果

問題 No.5011 Better Mo's Algorithm is Needed!! (Weighted)
ユーザー hitonanodehitonanode
提出日時 2022-12-17 03:38:57
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 4,764 ms / 5,000 ms
コード長 22,671 bytes
コンパイル時間 4,433 ms
実行使用メモリ 132,320 KB
スコア 35,148,007,244
最終ジャッジ日時 2022-12-17 03:49:21
合計ジャッジ時間 622,243 ms
ジャッジサーバーID
(参考情報)
judge16 / judge10
純コード判定しない問題か言語
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 4,759 ms
129,500 KB
testcase_01 AC 4,756 ms
129,568 KB
testcase_02 AC 4,761 ms
129,432 KB
testcase_03 AC 4,761 ms
129,556 KB
testcase_04 AC 4,757 ms
129,292 KB
testcase_05 AC 4,761 ms
129,312 KB
testcase_06 AC 4,757 ms
129,764 KB
testcase_07 AC 4,758 ms
130,256 KB
testcase_08 AC 4,758 ms
129,876 KB
testcase_09 AC 4,760 ms
130,120 KB
testcase_10 AC 4,757 ms
129,768 KB
testcase_11 AC 4,757 ms
130,228 KB
testcase_12 AC 4,757 ms
129,560 KB
testcase_13 AC 4,758 ms
129,500 KB
testcase_14 AC 4,759 ms
129,424 KB
testcase_15 AC 4,758 ms
129,612 KB
testcase_16 AC 4,756 ms
129,296 KB
testcase_17 AC 4,757 ms
129,304 KB
testcase_18 AC 4,756 ms
129,964 KB
testcase_19 AC 4,756 ms
129,820 KB
testcase_20 AC 4,759 ms
129,820 KB
testcase_21 AC 4,757 ms
130,088 KB
testcase_22 AC 4,755 ms
129,876 KB
testcase_23 AC 4,757 ms
130,028 KB
testcase_24 AC 4,756 ms
129,696 KB
testcase_25 AC 4,757 ms
129,572 KB
testcase_26 AC 4,756 ms
129,292 KB
testcase_27 AC 4,758 ms
129,612 KB
testcase_28 AC 4,756 ms
129,300 KB
testcase_29 AC 4,758 ms
129,292 KB
testcase_30 AC 4,758 ms
130,012 KB
testcase_31 AC 4,755 ms
130,364 KB
testcase_32 AC 4,756 ms
129,868 KB
testcase_33 AC 4,760 ms
130,260 KB
testcase_34 AC 4,758 ms
129,768 KB
testcase_35 AC 4,757 ms
130,220 KB
testcase_36 AC 4,757 ms
129,556 KB
testcase_37 AC 4,759 ms
129,704 KB
testcase_38 AC 4,760 ms
129,468 KB
testcase_39 AC 4,756 ms
129,576 KB
testcase_40 AC 4,757 ms
129,512 KB
testcase_41 AC 4,755 ms
129,432 KB
testcase_42 AC 4,756 ms
129,692 KB
testcase_43 AC 4,755 ms
129,956 KB
testcase_44 AC 4,757 ms
129,844 KB
testcase_45 AC 4,757 ms
130,232 KB
testcase_46 AC 4,756 ms
129,988 KB
testcase_47 AC 4,756 ms
130,260 KB
testcase_48 AC 4,758 ms
129,748 KB
testcase_49 AC 4,756 ms
129,772 KB
testcase_50 AC 4,758 ms
129,308 KB
testcase_51 AC 4,756 ms
129,716 KB
testcase_52 AC 4,755 ms
129,632 KB
testcase_53 AC 4,758 ms
129,344 KB
testcase_54 AC 4,756 ms
130,248 KB
testcase_55 AC 4,758 ms
129,676 KB
testcase_56 AC 4,757 ms
129,964 KB
testcase_57 AC 4,759 ms
130,096 KB
testcase_58 AC 4,759 ms
129,968 KB
testcase_59 AC 4,757 ms
130,204 KB
testcase_60 AC 4,760 ms
129,752 KB
testcase_61 AC 4,757 ms
129,572 KB
testcase_62 AC 4,758 ms
129,352 KB
testcase_63 AC 4,756 ms
129,616 KB
testcase_64 AC 4,755 ms
129,304 KB
testcase_65 AC 4,758 ms
129,512 KB
testcase_66 AC 4,755 ms
129,856 KB
testcase_67 AC 4,757 ms
129,852 KB
testcase_68 AC 4,756 ms
129,832 KB
testcase_69 AC 4,764 ms
130,312 KB
testcase_70 AC 4,756 ms
129,996 KB
testcase_71 AC 4,761 ms
130,088 KB
testcase_72 AC 4,755 ms
129,772 KB
testcase_73 AC 4,761 ms
129,556 KB
testcase_74 AC 4,756 ms
129,292 KB
testcase_75 AC 4,755 ms
129,552 KB
testcase_76 AC 4,757 ms
129,556 KB
testcase_77 AC 4,757 ms
129,024 KB
testcase_78 AC 4,756 ms
129,836 KB
testcase_79 AC 4,755 ms
129,692 KB
testcase_80 AC 4,758 ms
130,000 KB
testcase_81 AC 4,756 ms
130,300 KB
testcase_82 AC 4,755 ms
129,820 KB
testcase_83 AC 4,757 ms
130,140 KB
testcase_84 AC 4,757 ms
129,728 KB
testcase_85 AC 4,760 ms
129,576 KB
testcase_86 AC 4,757 ms
129,300 KB
testcase_87 AC 4,758 ms
129,744 KB
testcase_88 AC 4,761 ms
129,232 KB
testcase_89 AC 4,756 ms
129,280 KB
testcase_90 AC 4,760 ms
129,952 KB
testcase_91 AC 4,758 ms
132,320 KB
testcase_92 AC 4,761 ms
130,088 KB
testcase_93 AC 4,758 ms
130,100 KB
testcase_94 AC 4,759 ms
130,128 KB
testcase_95 AC 4,755 ms
130,276 KB
testcase_96 AC 4,759 ms
129,752 KB
testcase_97 AC 4,756 ms
129,572 KB
testcase_98 AC 4,755 ms
129,512 KB
testcase_99 AC 4,759 ms
129,560 KB
testcase_100 AC 4,755 ms
129,484 KB
testcase_101 AC 4,760 ms
129,308 KB
testcase_102 AC 4,755 ms
129,996 KB
testcase_103 AC 4,758 ms
129,764 KB
testcase_104 AC 4,756 ms
129,796 KB
testcase_105 AC 4,757 ms
130,304 KB
testcase_106 AC 4,756 ms
129,828 KB
testcase_107 AC 4,757 ms
130,520 KB
testcase_108 AC 4,756 ms
130,044 KB
testcase_109 AC 4,758 ms
129,360 KB
testcase_110 AC 4,756 ms
129,312 KB
testcase_111 AC 4,758 ms
129,500 KB
testcase_112 AC 4,758 ms
129,312 KB
testcase_113 AC 4,756 ms
129,508 KB
testcase_114 AC 4,757 ms
129,820 KB
testcase_115 AC 4,757 ms
129,676 KB
testcase_116 AC 4,755 ms
129,952 KB
testcase_117 AC 4,757 ms
130,212 KB
testcase_118 AC 4,755 ms
129,992 KB
testcase_119 AC 4,756 ms
130,220 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }
template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }
template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }
template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl
#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr)
#else
#define dbg(x) ((void)0)
#define dbgif(cond, x) ((void)0)
#endif

#include <algorithm>
#include <tuple>
#include <utility>
#include <vector>

// 2次元の kd-tree
// 矩形内の全頂点取得が可能
// Verified: abc234h https://atcoder.jp/contests/abc234/submissions/28456735
template <class T> struct kd_tree {
    std::vector<std::pair<T, T>> _ps;
    struct Node {
        T xmin, xmax, ymin, ymax;
        std::vector<int> ids;
        int lch, rch;
        template <class OStream> friend OStream &operator<<(OStream &os, const Node &n) {
            os << "{Node[" << n.xmin << ", " << n.xmax << "]x[" << n.ymin << ", " << n.ymax
               << "], ids=(";
            for (auto i : n.ids) os << i << ',';
            os << "), chs=" << n.lch << ',' << n.rch << '}';
            return os;
        }
    };
    std::vector<Node> _nodes;

    using Tpl = std::tuple<int, T, T>;
    std::vector<Tpl> _tmp;

    int _build(int l, int r, int nsplitx, int nsplity) {
        if (l >= r) return -1;
        T xmin = std::get<1>(_tmp[l]), xmax = xmin, ymin = std::get<2>(_tmp[l]), ymax = ymin;
        std::vector<int> ids(r - l);
        for (int i = l; i < r; ++i) {
            T x = std::get<1>(_tmp[i]), y = std::get<2>(_tmp[i]);
            if (x < xmin) xmin = x;
            if (x > xmax) xmax = x;
            if (y < ymin) ymin = y;
            if (y > ymax) ymax = y;
            ids[i - l] = std::get<0>(_tmp[i]);
        }
        const int _node_id = _nodes.size();
        _nodes.push_back({xmin, xmax, ymin, ymax, ids, -1, -1});

        // Decide which direction to split
        bool split_x = xmax - xmin > ymax - ymin;
        if (nsplitx > 3) split_x = false; // 同じ方向に何度も連続で切らない
        if (nsplity > 3) split_x = true;

        if (r - l > 1) {
            int c = (l + r) / 2;
            if (split_x) {
                // split x
                std::nth_element(
                    _tmp.begin() + l, _tmp.begin() + c, _tmp.begin() + r,
                    [&](const Tpl &l, const Tpl &r) { return std::get<1>(l) < std::get<1>(r); });
                _nodes[_node_id].lch = _build(l, c, nsplitx + 1, 0);
                _nodes[_node_id].rch = _build(c, r, nsplitx + 1, 0);
            } else {
                // split y
                std::nth_element(
                    _tmp.begin() + l, _tmp.begin() + c, _tmp.begin() + r,
                    [&](const Tpl &l, const Tpl &r) { return std::get<2>(l) < std::get<2>(r); });
                _nodes[_node_id].lch = _build(l, c, 0, nsplity + 1);
                _nodes[_node_id].rch = _build(c, r, 0, nsplity + 1);
            }
        }
        return _node_id;
    }

    void _initialize(const std::vector<std::pair<T, T>> &vs) {
        _ps = vs;
        _tmp.resize(_ps.size());
        for (int i = 0; i < int(vs.size()); ++i)
            _tmp[i] = std::make_tuple(i, vs[i].first, vs[i].second);
        _build(0, _tmp.size(), 0, 0);
    }
    kd_tree(const std::vector<std::pair<T, T>> &vs) { _initialize(vs); }

    std::vector<int> get_rect(T xmin, T xmax, T ymin, T ymax) const {
        // [xmin, xmax] * [ymin, ymax] に含まれる全点取得
        std::vector<int> ret;
        std::vector<int> _stack;
        if (_nodes.size()) _stack.push_back(0);
        while (!_stack.empty()) {
            const Node &now = _nodes[_stack.back()];
            _stack.pop_back();
            if (xmax < now.xmin or now.xmax < xmin or ymax < now.ymin or now.ymax < ymin) {
                ;
            } else if (xmin <= now.xmin and now.xmax <= xmax and ymin <= now.ymin and
                       now.ymax <= ymax) {
                ret.insert(ret.end(), now.ids.begin(), now.ids.end());
            } else {
                if (now.lch >= 0) _stack.push_back(now.lch);
                if (now.rch >= 0) _stack.push_back(now.rch);
            }
        }
        return ret;
    }
};


// Mo's algorithm
// - add_range(l, r) : Add [l, r) as query.
// - run() : run Mo's algorithm.
template <class Int, Int INF>
class MosAlgorithm {
    Int nmin, nmax;

public:
    struct Point {
        Int first, second;
        int qid;
    };
    std::vector<Point> ranges;
    MosAlgorithm() : nmin(INF), nmax(-INF) {}

    void add_range(Int l, Int r, int q) {
        assert(l <= r);
        nmin = std::min(nmin, l);
        nmax = std::max(nmax, r);
        ranges.push_back(Point{l, r, q});
    }
    std::vector<int> run() {
        const int Q = ranges.size();
        const int nbbucket = std::max(1, std::min<int>(nmax - nmin, sqrt(Q)));
        const Int szbucket = (nmax - nmin + nbbucket - 1) / nbbucket;
        std::vector<int> qs(Q);
        std::iota(qs.begin(), qs.end(), 0);
        std::sort(qs.begin(), qs.end(), [&](int q1, int q2) {
            auto b1 = (ranges[q1].first - nmin) / szbucket, b2 = (ranges[q2].first - nmin) / szbucket;
            if (b1 != b2)
                return b1 < b2;
            else {
                return (b1 & 1) ? (ranges[q1].second > ranges[q2].second)
                                : (ranges[q1].second < ranges[q2].second);
            }
        });
        return qs;
    }
};

uint32_t rand_int() // XorShift random integer generator
{
    static uint32_t x = 123456789, y = 362436069, z = 521288629, w = 88675123;
    uint32_t t = x ^ (x << 11);
    x = y;
    y = z;
    z = w;
    return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
double rand_double() { return (double)rand_int() / UINT32_MAX; }

using Cost = lint;
vector<plint> xs;
Cost calc_dist(int i, int j) {
    auto dx = xs.at(j) - xs.at(i);
    return abs(dx.first) + abs(dx.second);
}

std::mt19937 mt(100);

#include <optional>

template <class T> struct SymmetricTSP {
    int _n;
    inline T dist(int s, int t) const noexcept { return calc_dist(s, t); }

    struct Solution {
        T primal;
        std::vector<int> path;

        template <class OStream> friend OStream &operator<<(OStream &os, const Solution &x) {
            os << "[primal sol=" << x.primal << ", path=(";
            if (!x.path.empty()) {
                for (int i : x.path) os << i << ">";
                os << x.path.front() << ")]";
            }
            return os;
        }
    };

    std::vector<std::vector<std::pair<T, int>>> adjacents;

    void build_adjacent_info(std::vector<std::vector<std::pair<T, int>>> &info_) { adjacents = info_; }

    SymmetricTSP(int n) : _n(n) {}

    Solution nearest_neighbor(std::optional<int> init = std::nullopt) const {
        if (n() == 0) return {T(), {}};
        int now = init.value_or(0);
        std::vector<int> ret{now}, alive(n(), 1);
        T len = T();
        ret.reserve(n());
        alive.at(now) = 0;
        while (int(ret.size()) < n()) {
            int nxt = -1;
            for (int i = 0; i < n(); ++i) {
                if (alive.at(i) and (nxt < 0 or dist(now, i) < dist(now, nxt))) nxt = i;
            }
            ret.push_back(nxt);
            alive.at(nxt) = 0;
            len += dist(now, nxt);
            now = nxt;
        }
        len += dist(ret.back(), ret.front());
        return Solution{len, ret};
    }

    void two_opt(Solution &sol) const {
        while (true) {
            bool updated = false;
            for (int i = 0; i + 1 < n() and !updated; ++i) {
                int u = sol.path.at(i), nxtu = sol.path.at(i + 1);
                for (int j = i + 2; j < n(); ++j) {
                    int v = sol.path.at(j), nxtv = sol.path.at(j + 1 < n() ? j + 1 : 0);
                    T diff = dist(u, v) + dist(nxtu, nxtv) - dist(u, nxtu) - dist(v, nxtv);
                    if (diff < 0) {
                        sol.primal += diff;
                        std::reverse(sol.path.begin() + i + 1, sol.path.begin() + j + 1);
                        updated = true;
                        break;
                    }
                }
            }
            if (!updated) break;
        }
    }

    template <class Clock>
    void two_opt_near(Solution &sol, Clock &START) {
        // if (adjacents.empty()) build_adjacent_info(20);
        static std::vector<int> v_to_i;
        v_to_i.resize(n());
        while (true) {
            int64_t spent_ms = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now() - START).count();
            if (spent_ms > 4700) break;
            // dbg(sol.primal);
            for (int i = 0; i < n(); ++i) v_to_i.at(sol.path.at(i)) = i;
            bool updated = false;
            for (int i = 0; i < n() and !updated; ++i) {
                int u = sol.path.at(i), nxtu = sol.path.at(modn(i + 1));
                T dunxtu = dist(u, nxtu);

                for (auto [duv, v] : adjacents.at(u)) {
                    if (v == nxtu) continue;
                    int j = v_to_i.at(v), nxtv = sol.path.at(modn(j + 1));
                    T diff = duv + dist(nxtu, nxtv) - dunxtu - dist(v, nxtv);
                    if (diff < 0) {
                        sol.primal += diff;
                        if (i < j) {
                            std::reverse(sol.path.begin() + i + 1, sol.path.begin() + j + 1);
                        } else {
                            std::reverse(sol.path.begin() + j + 1, sol.path.begin() + i + 1);
                        }
                        updated = true;
                        break;
                    }
                }
                if (updated) break;

                for (auto [dnxtunxtv, nxtv] : adjacents.at(nxtu)) {
                    if (nxtv == u) continue;
                    int j = modn(v_to_i.at(nxtv) - 1), v = sol.path.at(j);
                    T diff = dist(u, v) + dnxtunxtv - dunxtu - dist(v, nxtv);
                    if (diff < 0) {
                        sol.primal += diff;
                        if (i < j) {
                            std::reverse(sol.path.begin() + i + 1, sol.path.begin() + j + 1);
                        } else {
                            std::reverse(sol.path.begin() + j + 1, sol.path.begin() + i + 1);
                        }
                        updated = true;
                        break;
                    }
                }
            }
            if (!updated) break;
        }
    }

    bool three_opt(Solution &sol, const int max_size = 0) const {
        for (int s = 1; s < (max_size > 0 ? max_size : n()); ++s) {
            for (int i = 0; i < n(); ++i) {
                for (int l = s + 1; l < n(); ++l) {
                    int u = sol.path.at(modn(i - 1)), nxtu = sol.path.at(i);
                    int v = sol.path.at(modn(i + s - 1)), nxtv = sol.path.at(modn(i + s));
                    int w = sol.path.at(modn(i + l - 1)), nxtw = sol.path.at(modn(i + l));

                    T current = dist(u, nxtu) + dist(v, nxtv) + dist(w, nxtw);
                    if (T diff = dist(u, nxtv) + dist(w, nxtu) + dist(v, nxtw) - current; diff < T()) {
                        sol.primal += diff;
                        std::rotate(sol.path.begin(), sol.path.begin() + i, sol.path.end());
                        std::rotate(sol.path.begin(), sol.path.begin() + s, sol.path.begin() + l);
                        return true;
                    }

                    if (T diff = dist(u, w) + dist(nxtv, nxtu) + dist(v, nxtw) - current; diff < T()) {
                        sol.primal += diff;
                        std::rotate(sol.path.begin(), sol.path.begin() + i, sol.path.end());
                        std::rotate(sol.path.begin(), sol.path.begin() + s, sol.path.begin() + l);
                        std::reverse(sol.path.begin(), sol.path.begin() + (l - s));
                        return true;
                    }

                    if (T diff = dist(u, nxtv) + dist(w, v) + dist(nxtu, nxtw) - current; diff < T()) {
                        sol.primal += diff;
                        std::rotate(sol.path.begin(), sol.path.begin() + i, sol.path.end());
                        std::rotate(sol.path.begin(), sol.path.begin() + s, sol.path.begin() + l);
                        std::reverse(sol.path.begin() + (l - s), sol.path.begin() + l);
                        return true;
                    }

                    if (T diff = dist(u, v) + dist(nxtu, w) + dist(nxtv, nxtw) - current; diff < T()) {
                        sol.primal += diff;
                        std::rotate(sol.path.begin(), sol.path.begin() + i, sol.path.end());
                        std::reverse(sol.path.begin(), sol.path.begin() + s);
                        std::reverse(sol.path.begin() + s, sol.path.begin() + l);
                        return true;
                    }
                }
            }
        }
        return false;
    }

    bool double_bridge(Solution &sol, std::mt19937 &mt) const {
        if (n() < 8) return false;

        std::vector<int> &p = sol.path;
        int rand_rot = std::uniform_int_distribution<int>(0, n() - 1)(mt);
        std::rotate(p.begin(), p.begin() + rand_rot, p.end());

        static std::array<int, 3> arr;
        for (int &y : arr) y = std::uniform_int_distribution<int>(2, n() - 6)(mt);
        std::sort(arr.begin(), arr.end());
        const int i = arr.at(0), j = arr.at(1) + 2, k = arr.at(2) + 4;
        static std::array<T, 2> diffs;
        for (int d = 0; d < 2; ++d) {
            int u = p.at(n() - 1), nxtu = p.at(0);
            int v = p.at(i - 1), nxtv = p.at(i);
            int w = p.at(j - 1), nxtw = p.at(j);
            int x = p.at(k - 1), nxtx = p.at(k);
            diffs.at(d) = dist(u, nxtu) + dist(v, nxtv) + dist(w, nxtw) + dist(x, nxtx);
            if (d == 1) break;
            std::reverse(p.begin(), p.begin() + i);
            std::reverse(p.begin() + i, p.begin() + j);
            std::reverse(p.begin() + j, p.begin() + k);
            std::reverse(p.begin() + k, p.end());
        }
        sol.primal += diffs.at(1) - diffs.at(0);
        return true;
    }

    int n() const noexcept { return _n; }
    int modn(int x) const noexcept {
        if (x < 0) return x + n();
        if (x >= n()) return x - n();
        return x;
    }
};

Cost eval(const vector<int> &seq) {
    Cost cost = 0;
    FOR(i, 1, seq.size()) cost += calc_dist(seq.at(i - 1), seq.at(i));
    return cost;
}

#include <chrono>
int main() {

    auto START = std::chrono::system_clock::now();

    int N, Q, WT, ST;
    cin >> N >> Q >> WT >> ST;
    vector<lint> W(N);
    cin >> W;

    vector<lint> scale(N + 1);
    REP(i, N) scale.at(i + 1) = scale.at(i) + W.at(i);

    xs.resize(Q);
    for (auto &[x, y] : xs) {
        cin >> x >> y;
        --x;
        x = scale.at(x), y = scale.at(y);
    }
    // dbg(xs);

    vector<plint> uvs(Q);
    REP(q, Q) {
        auto [x, y] = xs.at(q);
        uvs.at(q) = make_pair(x + y, x - y);
    }

    kd_tree<lint> tree(uvs);

    vector<vector<pair<lint, int>>> neis(Q);

    constexpr int AS = 4;
    dbg("KD BUILD");
    REP(q, Q) {
        lint w = 1 << 7;
        const auto [u, v] = uvs.at(q);
        vector<int> nei_q;
        while (nei_q.size() < AS and nei_q.size() < Q) {
            w *= 2;
            nei_q = tree.get_rect(u - w, u + w + 1, v - w, v + w + 1);
        }
        for (auto i : nei_q) {
            if (i != q) neis.at(q).emplace_back(calc_dist(q, i), i);
        }
        sort(neis.at(q).begin(), neis.at(q).end());
        while (neis.at(q).size() > AS) neis.at(q).pop_back();
    }
    dbg("KD BUILD DONE");

    MosAlgorithm<lint, 1LL << 60> mo;
    REP(q, Q) mo.add_range(xs.at(q).first, xs.at(q).second, q);
    SymmetricTSP<Cost>::Solution sol{Cost(0), mo.run()};
    dbg("INIT SOL BUILD");

    // dbg(neis);

    SymmetricTSP<Cost> tsp(Q);
    tsp.build_adjacent_info(neis);
    dbg("Solve 2-opt");
    dbg(eval(sol.path));
    tsp.two_opt_near(sol, START);
    dbg(eval(sol.path));

    for (auto q : sol.path) cout << q + 1 << " ";
    cout << endl;
}
0