結果

問題 No.2172 SEARCH in the Text Editor
ユーザー NyaanNyaanNyaanNyaan
提出日時 2022-12-18 22:01:46
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 267 ms / 2,000 ms
コード長 20,869 bytes
コンパイル時間 3,297 ms
コンパイル使用メモリ 267,208 KB
実行使用メモリ 22,456 KB
最終ジャッジ日時 2024-11-18 06:08:43
合計ジャッジ時間 6,648 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 267 ms
22,456 KB
testcase_04 AC 67 ms
22,336 KB
testcase_05 AC 72 ms
22,340 KB
testcase_06 AC 17 ms
7,040 KB
testcase_07 AC 13 ms
6,816 KB
testcase_08 AC 14 ms
6,820 KB
testcase_09 AC 28 ms
8,192 KB
testcase_10 AC 25 ms
7,936 KB
testcase_11 AC 16 ms
6,816 KB
testcase_12 AC 19 ms
7,168 KB
testcase_13 AC 23 ms
8,064 KB
testcase_14 AC 30 ms
9,084 KB
testcase_15 AC 18 ms
6,820 KB
testcase_16 AC 20 ms
7,552 KB
testcase_17 AC 18 ms
6,912 KB
testcase_18 AC 32 ms
8,832 KB
testcase_19 AC 25 ms
8,576 KB
testcase_20 AC 15 ms
6,820 KB
testcase_21 AC 31 ms
9,600 KB
testcase_22 AC 34 ms
9,960 KB
testcase_23 AC 36 ms
10,020 KB
testcase_24 AC 36 ms
10,036 KB
testcase_25 AC 37 ms
9,936 KB
testcase_26 AC 77 ms
22,416 KB
testcase_27 AC 79 ms
22,440 KB
testcase_28 AC 30 ms
9,892 KB
testcase_29 AC 34 ms
9,836 KB
testcase_30 AC 35 ms
9,876 KB
testcase_31 AC 35 ms
9,948 KB
testcase_32 AC 34 ms
9,944 KB
testcase_33 AC 33 ms
9,984 KB
testcase_34 AC 33 ms
9,920 KB
testcase_35 AC 35 ms
9,900 KB
testcase_36 AC 34 ms
9,896 KB
testcase_37 AC 35 ms
10,076 KB
testcase_38 AC 68 ms
22,428 KB
testcase_39 AC 69 ms
22,340 KB
testcase_40 AC 31 ms
10,052 KB
testcase_41 AC 33 ms
9,972 KB
testcase_42 AC 35 ms
10,016 KB
testcase_43 AC 35 ms
9,976 KB
testcase_44 AC 35 ms
10,000 KB
testcase_45 AC 35 ms
9,872 KB
testcase_46 AC 23 ms
7,680 KB
testcase_47 AC 16 ms
6,816 KB
testcase_48 AC 18 ms
6,816 KB
testcase_49 AC 31 ms
9,088 KB
testcase_50 AC 28 ms
8,704 KB
testcase_51 AC 16 ms
6,820 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/**
 *  date : 2022-12-18 22:01:38
 */

#define NDEBUG
// 想定 TLE

using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N,F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(vector<T> &v) {
  return next_permutation(begin(v), end(v));
}

template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

}  // namespace Nyaan

// bit operation
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan

// inout
namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

void outr() {}
template <typename T, class... U, char sep = ' '>
void outr(const T &t, const U &...u) {
  cout << t;
  outr(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan

// debug

#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif

// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)

namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }

//


namespace inner {
using i64 = long long;
using u64 = unsigned long long;
using u128 = __uint128_t;

template <int BASE_NUM = 2>
struct Hash : array<u64, BASE_NUM> {
  using array<u64, BASE_NUM>::operator[];
  static constexpr int n = BASE_NUM;

  Hash() : array<u64, BASE_NUM>() {}

  static constexpr u64 md = (1ull << 61) - 1;

  constexpr static Hash set(const i64 &a) {
    Hash res;
    fill(begin(res), end(res), cast(a));
    return res;
  }
  Hash &operator+=(const Hash &r) {
    for (int i = 0; i < n; i++)
      if (((*this)[i] += r[i]) >= md) (*this)[i] -= md;
    return *this;
  }
  Hash &operator+=(const i64 &r) {
    u64 s = cast(r);
    for (int i = 0; i < n; i++)
      if (((*this)[i] += s) >= md) (*this)[i] -= md;
    return *this;
  }
  Hash &operator-=(const Hash &r) {
    for (int i = 0; i < n; i++)
      if (((*this)[i] += md - r[i]) >= md) (*this)[i] -= md;
    return *this;
  }
  Hash &operator-=(const i64 &r) {
    u64 s = cast(r);
    for (int i = 0; i < n; i++)
      if (((*this)[i] += md - s) >= md) (*this)[i] -= md;
    return *this;
  }
  Hash &operator*=(const Hash &r) {
    for (int i = 0; i < n; i++) (*this)[i] = modmul((*this)[i], r[i]);
    return *this;
  }
  Hash &operator*=(const i64 &r) {
    u64 s = cast(r);
    for (int i = 0; i < n; i++) (*this)[i] = modmul((*this)[i], s);
    return *this;
  }

  Hash operator+(const Hash &r) { return Hash(*this) += r; }
  Hash operator+(const i64 &r) { return Hash(*this) += r; }
  Hash operator-(const Hash &r) { return Hash(*this) -= r; }
  Hash operator-(const i64 &r) { return Hash(*this) -= r; }
  Hash operator*(const Hash &r) { return Hash(*this) *= r; }
  Hash operator*(const i64 &r) { return Hash(*this) *= r; }
  Hash operator-() const {
    Hash res;
    for (int i = 0; i < n; i++) res[i] = (*this)[i] == 0 ? 0 : md - (*this)[i];
    return res;
  }
  friend Hash pfma(const Hash &a, const Hash &b, const Hash &c) {
    Hash res;
    for (int i = 0; i < n; i++) res[i] = modfma(a[i], b[i], c[i]);
    return res;
  }
  friend Hash pfma(const Hash &a, const Hash &b, const i64 &c) {
    Hash res;
    u64 s = cast(c);
    for (int i = 0; i < n; i++) res[i] = modfma(a[i], b[i], s);
    return res;
  }

  static Hash get_basis() {
    static auto rand_time =
        chrono::duration_cast<chrono::nanoseconds>(
            chrono::high_resolution_clock::now().time_since_epoch())
            .count();
    static mt19937_64 rng(rand_time);
    Hash h;
    for (int i = 0; i < n; i++) {
      while (isPrimitive(h[i] = rng() % (md - 1) + 1) == false)
        ;
    }
    return h;
  }

 private:
  static u64 modpow(u64 a, u64 b) {
    u64 r = 1;
    for (a %= md; b; a = modmul(a, a), b >>= 1) r = modmul(r, a);
    return r;
  }
  static bool isPrimitive(u64 x) {
    for (auto &d : vector<u64>{2, 3, 5, 7, 11, 13, 31, 41, 61, 151, 331, 1321})
      if (modpow(x, (md - 1) / d) <= 1) return false;
    return true;
  }
  static inline constexpr u64 cast(const long long &a) {
    return a < 0 ? a + md : a;
  }
  static inline constexpr u64 modmul(const u64 &a, const u64 &b) {
    u128 ret = u128(a) * b;
    ret = (ret & md) + (ret >> 61);
    return ret >= md ? ret - md : ret;
  }
  static inline constexpr u64 modfma(const u64 &a, const u64 &b, const u64 &c) {
    u128 ret = u128(a) * b + c;
    ret = (ret & md) + (ret >> 61);
    return ret >= md ? ret - md : ret;
  }
};

}  // namespace inner

/**
 * @brief ハッシュ構造体
 * @docs docs/inner/inner-hash.md
 */

template <typename Str, int BASE_NUM = 2>
struct RollingHash {
  using Hash = inner::Hash<BASE_NUM>;
  Str data;
  vector<Hash> hs, pw;
  int s;
  static Hash basis;

  RollingHash(const Str &S = Str()) { build(S); }

  void build(const Str &S) {
    data = S;
    s = S.size();
    hs.resize(s + 1);
    pw.resize(s + 1);
    pw[0] = Hash::set(1);
    hs[0] = Hash::set(0);
    for (int i = 1; i <= s; i++) {
      pw[i] = pw[i - 1] * basis;
      hs[i] = pfma(hs[i - 1], basis, S[i - 1]);
    }
  }

  Hash get(int l, int r = -1) const {
    if (r == -1) r = s;
    return pfma(hs[l], -pw[r - l], hs[r]);
  }

  static Hash get_hash(const Str &T) {
    Hash ret = Hash::set(0);
    for (int i = 0; i < (int)T.size(); i++) ret = pfma(ret, basis, T[i]);
    return ret;
  }

  int find(Str &T, int lower = 0) const {
    auto ths = get_hash(T);
    for (int i = lower; i <= s - (int)T.size(); i++)
      if (ths == get(i, i + (int)T.size())) return i;
    return -1;
  }

  friend int LCP(const RollingHash &a, const RollingHash &b, int al, int bl) {
    int ok = 0, ng = min(a.size() - al, b.size() - bl) + 1;
    while (ok + 1 < ng) {
      int med = (ok + ng) / 2;
      (a.get(al, med + al) == b.get(bl, med + bl) ? ok : ng) = med;
    }
    return ok;
  }

  friend int strcmp(const RollingHash &a, const RollingHash &b, int al, int bl,
                    int ar = -1, int br = -1) {
    if (ar == -1) ar = a.size();
    if (br == -1) br = b.size();
    int n = min<int>({LCP(a, b, al, bl), ar - al, br - bl});
    return al + n == ar                      ? bl + n == br ? 0 : 1
           : bl + n == br                    ? -1
           : a.data[al + n] < b.data[bl + n] ? 1
                                             : -1;
  }

  int size() const { return s; }
};

template <typename Str, int BASE_NUM>
typename RollingHash<Str, BASE_NUM>::Hash RollingHash<Str, BASE_NUM>::basis =
    inner::Hash<BASE_NUM>::get_basis();
using roriha = RollingHash<string, 2>;

/**
 * @brief Rolling Hash
 * @docs docs/string/rolling-hash.md
 */

//



template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(r * mod == 1, "invalid, r * mod != 1");
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  
  constexpr mint inverse() const { return pow(mod - 2); }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }
  
  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};

template <typename T>
struct Binomial {
  vector<T> f, g, h;
  Binomial(int MAX = 0) {
    assert(T::get_mod() != 0 && "Binomial<mint>()");
    f.resize(1, T{1});
    g.resize(1, T{1});
    h.resize(1, T{1});
    while (MAX >= (int)f.size()) extend();
  }

  void extend() {
    int n = f.size();
    int m = n * 2;
    f.resize(m);
    g.resize(m);
    h.resize(m);
    for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);
    g[m - 1] = f[m - 1].inverse();
    h[m - 1] = g[m - 1] * f[m - 2];
    for (int i = m - 2; i >= n; i--) {
      g[i] = g[i + 1] * T(i + 1);
      h[i] = g[i] * f[i - 1];
    }
  }

  T fac(int i) {
    if (i < 0) return T(0);
    while (i >= (int)f.size()) extend();
    return f[i];
  }

  T finv(int i) {
    if (i < 0) return T(0);
    while (i >= (int)g.size()) extend();
    return g[i];
  }

  T inv(int i) {
    if (i < 0) return -inv(-i);
    while (i >= (int)h.size()) extend();
    return h[i];
  }

  T C(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r) * finv(r);
  }

  inline T operator()(int n, int r) { return C(n, r); }

  template <typename I>
  T multinomial(const vector<I>& r) {
    static_assert(is_integral<I>::value == true);
    int n = 0;
    for (auto& x : r) {
      if (x < 0) return T(0);
      n += x;
    }
    T res = fac(n);
    for (auto& x : r) res *= finv(x);
    return res;
  }

  template <typename I>
  T operator()(const vector<I>& r) {
    return multinomial(r);
  }

  T C_naive(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    T ret = T(1);
    r = min(r, n - r);
    for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
    return ret;
  }

  T P(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r);
  }

  // [x^r] 1 / (1-x)^n
  T H(int n, int r) {
    if (n < 0 || r < 0) return T(0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
};

//
using namespace Nyaan;
using mint = LazyMontgomeryModInt<998244353>;

void q() {
  ini(N);
  ins(T);
  roriha rt{T};

  // |T| - 1 文字以下の prefix / suffix
  int limit = sz(T) - 1;
  V<string> pre(N), suf(N);
  V<mint> cnt(N);

  auto count1 = [&](string S) -> mint {
    if (sz(S) < sz(T)) return 0;
    mint res = 0;
    char* ps = S.data();
    char* pt = T.data();
    rep(i, sz(S) - sz(T) + 1) {
      int ok = 1;
      for (int j = 0; j < sz(T); j++) {
        if (ps[j] != pt[j]) {
          ok = 0;
          break;
        }
      }
      res += ok;
      ps++;
    }
    return res;
  };

  auto count2 = [&](string A, string B) -> mint {
    if (sz(A) + sz(B) < sz(T)) return 0;
    string S = A + B;
    mint res = 0;
    char* ps = S.data();
    char* pt = T.data();
    rep(i, sz(S) - sz(T) + 1) {
      int ok = 1;
      for (int j = 0; j < sz(T); j++) {
        if (ps[j] != pt[j]) {
          ok = 0;
          break;
        }
      }
      res += ok;
      ps++;
    }
    return res;
  };

  rep(i, N) {
    ins(S);
    if (S == "~") {
      ini(j, k);
      --j, --k;

      if (sz(pre[j]) < limit) {
        int len = min(limit - sz(pre[j]), sz(pre[k]));
        pre[i] = pre[j] + string{begin(pre[k]), begin(pre[k]) + len};
      } else {
        pre[i] = pre[j];
      }

      if (sz(suf[k]) < limit) {
        int len = min(limit - sz(suf[k]), sz(suf[j]));
        suf[i] = string{end(suf[j]) - len, end(suf[j])} + suf[k];
      } else {
        suf[i] = suf[k];
      }

      cnt[i] = cnt[j] + cnt[k] + count2(suf[j], pre[k]);
    } else {
      pre[i] = {begin(S), begin(S) + min(limit, sz(S))};
      suf[i] = {end(S) - min(limit, sz(S)), end(S)};
      cnt[i] = count1(S);
    }
  }

  cout << cnt.back() << endl;
}

void Nyaan::solve() {
  int t = 1;
  // in(t);
  while (t--) q();
}
0