結果

問題 No.2166 Paint and Fill
ユーザー akakimidoriakakimidori
提出日時 2022-12-20 16:34:29
言語 Rust
(1.77.0)
結果
AC  
実行時間 3,519 ms / 10,000 ms
コード長 31,631 bytes
コンパイル時間 5,547 ms
コンパイル使用メモリ 191,868 KB
実行使用メモリ 265,756 KB
最終ジャッジ日時 2023-08-11 10:21:13
合計ジャッジ時間 63,749 ms
ジャッジサーバーID
(参考情報)
judge11 / judge14
このコードへのチャレンジ(β)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
4,380 KB
testcase_01 AC 195 ms
6,560 KB
testcase_02 AC 678 ms
122,796 KB
testcase_03 AC 26 ms
5,848 KB
testcase_04 AC 25 ms
5,868 KB
testcase_05 AC 25 ms
5,804 KB
testcase_06 AC 25 ms
5,812 KB
testcase_07 AC 25 ms
5,856 KB
testcase_08 AC 1,142 ms
131,820 KB
testcase_09 AC 1,127 ms
131,752 KB
testcase_10 AC 1,116 ms
131,860 KB
testcase_11 AC 1,134 ms
131,932 KB
testcase_12 AC 1,109 ms
131,948 KB
testcase_13 AC 3,519 ms
264,896 KB
testcase_14 AC 3,493 ms
264,900 KB
testcase_15 AC 3,453 ms
265,756 KB
testcase_16 AC 3,407 ms
265,160 KB
testcase_17 AC 3,473 ms
264,840 KB
testcase_18 AC 2,783 ms
254,348 KB
testcase_19 AC 2,780 ms
254,304 KB
testcase_20 AC 3,006 ms
261,660 KB
testcase_21 AC 2,896 ms
260,420 KB
testcase_22 AC 2,271 ms
250,108 KB
testcase_23 AC 2,542 ms
255,900 KB
testcase_24 AC 2,547 ms
256,764 KB
testcase_25 AC 1 ms
4,380 KB
testcase_26 AC 1 ms
4,384 KB
testcase_27 AC 670 ms
6,440 KB
testcase_28 AC 868 ms
6,516 KB
testcase_29 AC 761 ms
5,096 KB
testcase_30 AC 947 ms
6,608 KB
testcase_31 AC 953 ms
6,640 KB
testcase_32 AC 954 ms
6,648 KB
testcase_33 AC 943 ms
6,672 KB
testcase_34 AC 964 ms
6,596 KB
testcase_35 AC 943 ms
6,680 KB
testcase_36 AC 954 ms
6,624 KB
testcase_37 AC 949 ms
6,680 KB
testcase_38 AC 948 ms
6,700 KB
testcase_39 AC 949 ms
6,676 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: function `naive` is never used
   --> Main.rs:177:4
    |
177 | fn naive(n: usize, k: usize) -> M {
    |    ^^^^^
    |
    = note: `#[warn(dead_code)]` on by default

warning: 1 warning emitted

ソースコード

diff #

use std::collections::*;
use std::io::Write;

type Map<K, V> = BTreeMap<K, V>;

fn main() {
    input! {
        t: usize,
        ask: [(usize, usize); t],
    }
    let ans = if t <= 5 {
        test2(ask)
    } else {
        test1(ask)
    };
    let out = std::io::stdout();
    let mut out = std::io::BufWriter::new(out.lock());
    for a in ans {
        writeln!(out, "{}", a).ok();
    }
}

fn test1(ask: Vec<(usize, usize)>) -> Vec<M> {
    let max = ask.iter().map(|p| p.1).max().unwrap();
    let mut leaf = vec![];
    for i in 1..=max {
        leaf.push((i, 0, 0));
    }
    for &(n, k) in ask.iter() {
        leaf.push((k, 1, n));
    }
    leaf.sort();
    let size = leaf.len().next_power_of_two();
    let mut e = vec![vec![vec![]; 2]; 2];
    e[0][0] = vec![M::one()];
    e[1][1] = vec![M::one()];
    let e = e;
    let mut mat = vec![e.clone(); 2 * size];
    let mut prod = vec![vec![M::one()]; 2 * size];
    for (i, &(k, op, n)) in leaf.iter().enumerate() {
        if op == 1 {
            prod[size + i] = vec![-M::from(n), M::one()];
        } else {
            let mut res = vec![vec![vec![]; 2]; 2];
            let inv2 = M::new(2).inv();
            res[0][0] = vec![-M::from(2 * (k - 1)), M::new(2)];
            res[1][0] = vec![-M::from(k as i64 - 2) * inv2, M::one()];
            res[0][1] = vec![M::from(k)];
            mat[size + i] = res;
        }
    }
    for i in (1..size).rev() {
        prod[i] = prod[2 * i].multiply(&prod[2 * i + 1]);
        mat[i] = matmul(&mat[2 * i], &mat[2 * i + 1]);
    }
    let (prod, mat) = (prod, mat);
    let mut eval = vec![vec![]; 2 * size];
    eval[1] = vec![vec![M::one()], vec![]];
    for i in (1..size).filter(|x| prod[*x].len() > 1) {
        let mut u = std::mem::take(&mut eval[i]);
        for u in u.iter_mut() {
            *u = u.rem(&prod[i]);
        }
        eval[2 * i] = u.clone();
        let mut next = vec![vec![]; 2];
        for (u, mat) in u.iter().zip(mat[2 * i].iter()) {
            for (next, mat) in next.iter_mut().zip(mat.iter()) {
                next.add_assign(&u.multiply(mat));
            }
        }
        eval[2 * i + 1] = next;
    }
    let mut memo = Map::new();
    for (i, &(k, op, n)) in leaf.iter().enumerate() {
        if op == 1 {
            let s = eval[size + i][0].eval(M::from(n));
            memo.insert((n, k), s);
        }
    }
    ask.into_iter().map(|(n, k)| memo[&(n, k)]).collect()
}

fn matmul(a: &[Vec<Vec<M>>], b: &[Vec<Vec<M>>]) -> Vec<Vec<Vec<M>>> {
    let mut c = vec![vec![vec![]; 2]; 2];
    for (c, a) in c.iter_mut().zip(a.iter()) {
        for (a, b) in a.iter().zip(b.iter()) {
            for (c, b) in c.iter_mut().zip(b.iter()) {
                c.add_assign(&a.multiply(&b));
            }
        }
    }
    c
}

fn test2(ask: Vec<(usize, usize)>) -> Vec<M> {
    ask.into_iter().map(|(n, k)| solve_p_rec(n, k)).collect()
}

// i >= 1
// [f_i, f_{i - 1}] = [f_{i - 1}, f_{i - 2}] [[2n-2i+2, i], [n-i/2+1, 0]]

fn solve_p_rec(n: usize, k: usize) -> M {
    if k >= 998244353 {
        return M::zero();
    }
    if k == 0 {
        return M::one();
    }
    let mut d = 0usize;
    while 1 << (2 * d + 2) <= k {
        d += 1;
    }
    let shift_mat = |mat: &[Vec<Vec<M>>], c: M, w: usize| -> Vec<Vec<Vec<M>>> {
        mat.iter()
            .map(|mat| {
                mat.iter()
                    .map(|mat| shift_of_sampling_points_of_polynomial(mat, c, w))
                    .collect()
            })
            .collect()
    };
    let sq = M::from(1usize << d);
    let mut mat = vec![vec![vec![M::zero(); 2]; 2]; 2];
    mat[0][0][0] = M::from(2 * n);
    mat[0][0][1] = mat[0][0][0] - sq * M::new(2);
    mat[0][1][0] = M::one();
    mat[0][1][1] = M::one() + sq;
    mat[1][0][0] = M::from(n) + M::new(2).inv();
    mat[1][0][1] = mat[1][0][0] - sq * M::new(2).inv();
    for i in 0..d {
        let w = 1usize << i;
        let s = sq.inv();
        let mut a = shift_mat(&mat, s * M::from(w), w + 1);
        let b = shift_mat(&mat, s * (M::from(w) * sq + sq), w);
        let c = shift_mat(&mat, s * (M::from(w) * sq + sq + M::from(w)), w);
        for (mat, b) in mat.iter_mut().flatten().zip(b.into_iter().flatten()) {
            mat.extend(b);
        }
        for (a, c) in a.iter_mut().flatten().zip(c.into_iter().flatten()) {
            a.extend(c);
        }
        let mut next = vec![vec![vec![]; 2]; 2];
        for (next, mat) in next.iter_mut().zip(mat) {
            for (mat, a) in mat.into_iter().zip(a.iter()) {
                for (next, a) in next.iter_mut().zip(a) {
                    next.add_assign(&mat.dot(a));
                }
            }
        }
        mat = next;
    }
    let q = k >> d;
    mat = shift_mat(&mat, M::zero(), q);
    let mut dp = [M::one(), M::zero()];
    let it = mat[0][0].iter().zip(mat[0][1].iter());
    let it = it.zip(mat[1][0].iter());
    let it = it.zip(mat[1][1].iter());
    for (((a, b), c), d) in it {
        dp = [*a * dp[0] + *c * dp[1], *b * dp[0] + *d * dp[1]];
    }
    for i in (q << d)..k {
        let inv2 = M::new(2).inv();
        let a = M::from(2 * n) - M::from(2 * i);
        let c = M::from(n) - M::from(i - 1) * inv2;
        let b = M::from(i + 1);
        let d = M::zero();
        dp = [a * dp[0] + c * dp[1], b * dp[0] + d * dp[1]];
    }
    dp[0]
}

// g = (1 + f)^N
// として
// (1+f)g' = Nf'g
// ig_i + 2(i - 1)g_{i-1} + 1/2*(i-2)g_{i - 2} = N(2g_{i - 1} + g_{i - 2})

fn naive(n: usize, k: usize) -> M {
    if k >= 998244353 {
        return M::zero();
    }
    let n = n % 998244353;
    let inv2 = M::new(2).inv();
    let mut dp = (M::one(), M::zero());
    for i in 1..=k {
        let invi = M::from(i).inv();
        let a = (M::from(2 * n) - M::from(2 * (i - 1))) * invi;
        let b = (M::from(n) - M::from(i - 2) * inv2) * invi;
        dp = (dp.0 * a + dp.1 * b, dp.0);
        /*
        let mut v = M::from(n) * (M::new(2) * dp.0 + dp.1);
        v -= M::from(2 * (i - 1)) * dp.0 + M::from(i - 2) * inv2 * dp.1;
        v *= M::from(i).inv();
        dp = (v, dp.0);
        */
    }
    dp.0 * M::fact(k)
}

// f(0), f(1), .., f(N - 1) が分かってる, f はN次未満の多項式
// f(c), f(c+1), .., f(c+M-1) を計算する
fn shift_of_sampling_points_of_polynomial(f: &[M], c: M, m: usize) -> Vec<M> {
    assert!(f.len() > 0 && m > 0);
    let pc = precalc::Precalc::new(f.len() + m);
    let mut g = Vec::from(f);
    let mut d = vec![M::zero(); f.len()];
    let mut sign = M::one();
    for (i, (f, d)) in g.iter_mut().zip(d.iter_mut()).enumerate() {
        *f *= pc.ifact(i);
        *d = sign * pc.ifact(i);
        sign = -sign;
    }
    let mut a = g.multiply(&d);
    a.truncate(f.len());
    a.reverse();
    for (i, a) in a.iter_mut().enumerate() {
        *a *= pc.fact(f.len() - 1 - i);
    }
    let mut h = vec![M::zero(); f.len()];
    let mut v = M::one();
    for (i, h) in h.iter_mut().enumerate() {
        *h = v * pc.ifact(i);
        v *= c - M::from(i);
    }
    let mut b = a.multiply(&h);
    b.truncate(f.len());
    b.reverse();
    for (i, b) in b.iter_mut().enumerate() {
        *b *= pc.ifact(i);
    }
    let e = (0..m).map(|k| pc.ifact(k)).collect::<Vec<_>>();
    let mut res = b.multiply(&e);
    res.truncate(m);
    for (i, res) in res.iter_mut().enumerate() {
        *res *= pc.fact(i);
    }
    res
}

// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

#[macro_export]
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

#[macro_export]
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------
// ---------- begin ModInt ----------
// モンゴメリ乗算を用いる
// ほぼCodeforces用
// 注意
// new_unchecked は値xが 0 <= x < modulo であることを仮定
// ModInt の中身は正規化された値で持ってるので直接読んだり書いたりするとぶっ壊れる
// 奇素数のみ
mod modint {

    use std::marker::*;
    use std::ops::*;

    pub trait Modulo {
        fn modulo() -> u32;
        fn rem() -> u32;
        fn ini() -> u64;
        fn reduce(x: u64) -> u32 {
            debug_assert!(x < (Self::modulo() as u64) << 32);
            let b = (x as u32 * Self::rem()) as u64;
            let t = x + b * Self::modulo() as u64;
            let mut c = (t >> 32) as u32;
            if c >= Self::modulo() {
                c -= Self::modulo();
            }
            c as u32
        }
    }

    #[allow(dead_code)]
    pub enum Mod1_000_000_007 {}

    impl Modulo for Mod1_000_000_007 {
        fn modulo() -> u32 {
            1_000_000_007
        }
        fn rem() -> u32 {
            2226617417
        }
        fn ini() -> u64 {
            582344008
        }
    }

    #[allow(dead_code)]
    pub enum Mod998_244_353 {}

    impl Modulo for Mod998_244_353 {
        fn modulo() -> u32 {
            998_244_353
        }
        fn rem() -> u32 {
            998244351
        }
        fn ini() -> u64 {
            932051910
        }
    }

    #[allow(dead_code)]
    pub fn generate_umekomi_modulo(p: u32) {
        assert!(
            p < (1 << 31)
                && p > 2
                && p & 1 == 1
                && (2u32..).take_while(|v| v * v <= p).all(|k| p % k != 0)
        );
        let mut t = 1u32;
        let mut s = !p + 1;
        let mut n = !0u32 >> 2;
        while n > 0 {
            if n & 1 == 1 {
                t *= s;
            }
            s *= s;
            n >>= 1;
        }
        let mut ini = (1u64 << 32) % p as u64;
        ini = (ini << 32) % p as u64;
        assert!(t * p == !0);
        println!("pub enum Mod{} {{}}", p);
        println!("impl Modulo for Mod{} {{", p);
        println!("    fn modulo() -> u32 {{");
        println!("        {}", p);
        println!("    }}");
        println!("    fn rem() -> u32 {{");
        println!("        {}", t);
        println!("    }}");
        println!("    fn ini() -> u64 {{");
        println!("        {}", ini);
        println!("    }}");
        println!("}}");
        let mut f = vec![];
        let mut n = p - 1;
        for i in 2.. {
            if i * i > n {
                break;
            }
            if n % i == 0 {
                f.push(i);
                while n % i == 0 {
                    n /= i;
                }
            }
        }
        if n > 1 {
            f.push(n);
        }
        let mut order = 1;
        let mut n = p - 1;
        while n % 2 == 0 {
            n /= 2;
            order <<= 1;
        }
        let z = (2u64..)
            .find(|z| {
                f.iter()
                    .all(|f| mod_pow(*z, ((p - 1) / *f) as u64, p as u64) != 1)
            })
            .unwrap();
        let zeta = mod_pow(z, ((p - 1) / order) as u64, p as u64);
        println!("impl transform::NTTFriendly for Mod{} {{", p);
        println!("    fn order() -> usize {{");
        println!("        {}", order);
        println!("    }}");
        println!("    fn zeta() -> u32 {{");
        println!("        {}", zeta);
        println!("    }}");
        println!("}}");
    }

    pub struct ModInt<T>(u32, PhantomData<T>);

    impl<T> Clone for ModInt<T> {
        fn clone(&self) -> Self {
            ModInt::build(self.0)
        }
    }

    impl<T> Copy for ModInt<T> {}

    impl<T: Modulo> Add for ModInt<T> {
        type Output = ModInt<T>;
        fn add(self, rhs: Self) -> Self::Output {
            let mut d = self.0 + rhs.0;
            if d >= T::modulo() {
                d -= T::modulo();
            }
            Self::build(d)
        }
    }

    impl<T: Modulo> AddAssign for ModInt<T> {
        fn add_assign(&mut self, rhs: Self) {
            *self = *self + rhs;
        }
    }

    impl<T: Modulo> Sub for ModInt<T> {
        type Output = ModInt<T>;
        fn sub(self, rhs: Self) -> Self::Output {
            let mut d = self.0 - rhs.0;
            if self.0 < rhs.0 {
                d += T::modulo();
            }
            Self::build(d)
        }
    }

    impl<T: Modulo> SubAssign for ModInt<T> {
        fn sub_assign(&mut self, rhs: Self) {
            *self = *self - rhs;
        }
    }

    impl<T: Modulo> Mul for ModInt<T> {
        type Output = ModInt<T>;
        fn mul(self, rhs: Self) -> Self::Output {
            Self::build(T::reduce(self.0 as u64 * rhs.0 as u64))
        }
    }

    impl<T: Modulo> MulAssign for ModInt<T> {
        fn mul_assign(&mut self, rhs: Self) {
            *self = *self * rhs;
        }
    }

    impl<T: Modulo> Neg for ModInt<T> {
        type Output = ModInt<T>;
        fn neg(self) -> Self::Output {
            if self.0 == 0 {
                Self::zero()
            } else {
                Self::build(T::modulo() - self.0)
            }
        }
    }

    impl<T: Modulo> std::fmt::Display for ModInt<T> {
        fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
            write!(f, "{}", self.get())
        }
    }

    impl<T: Modulo> std::fmt::Debug for ModInt<T> {
        fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
            write!(f, "{}", self.get())
        }
    }

    impl<T: Modulo> std::str::FromStr for ModInt<T> {
        type Err = std::num::ParseIntError;
        fn from_str(s: &str) -> Result<Self, Self::Err> {
            let val = s.parse::<u32>()?;
            Ok(ModInt::new(val))
        }
    }

    impl<T: Modulo> From<usize> for ModInt<T> {
        fn from(val: usize) -> ModInt<T> {
            ModInt::new_unchecked((val % T::modulo() as usize) as u32)
        }
    }

    impl<T: Modulo> From<u64> for ModInt<T> {
        fn from(val: u64) -> ModInt<T> {
            ModInt::new_unchecked((val % T::modulo() as u64) as u32)
        }
    }

    impl<T: Modulo> From<i64> for ModInt<T> {
        fn from(val: i64) -> ModInt<T> {
            let m = T::modulo() as i64;
            ModInt::new((val % m + m) as u32)
        }
    }

    #[allow(dead_code)]
    impl<T> ModInt<T> {
        fn build(d: u32) -> Self {
            ModInt(d, PhantomData)
        }
        pub fn zero() -> Self {
            Self::build(0)
        }
        pub fn is_zero(&self) -> bool {
            self.0 == 0
        }
    }

    #[allow(dead_code)]
    impl<T: Modulo> ModInt<T> {
        pub fn new_unchecked(d: u32) -> Self {
            Self::build(T::reduce(d as u64 * T::ini()))
        }
        pub fn new(d: u32) -> Self {
            Self::new_unchecked(d % T::modulo())
        }
        pub fn one() -> Self {
            Self::new_unchecked(1)
        }
        pub fn get(&self) -> u32 {
            T::reduce(self.0 as u64)
        }
        pub fn pow(&self, mut n: u64) -> Self {
            let mut t = Self::one();
            let mut s = *self;
            while n > 0 {
                if n & 1 == 1 {
                    t *= s;
                }
                s *= s;
                n >>= 1;
            }
            t
        }
        pub fn inv(&self) -> Self {
            assert!(!self.is_zero());
            self.pow((T::modulo() - 2) as u64)
        }
        pub fn fact(n: usize) -> Self {
            (1..=n).fold(Self::one(), |s, a| s * Self::from(a))
        }
    }

    pub fn mod_pow(mut r: u64, mut n: u64, m: u64) -> u64 {
        let mut t = 1 % m;
        while n > 0 {
            if n & 1 == 1 {
                t = t * r % m;
            }
            r = r * r % m;
            n >>= 1;
        }
        t
    }
}
// ---------- end ModInt ----------
// ---------- begin Precalc ----------
mod precalc {
    use super::modint::*;
    #[allow(dead_code)]
    pub struct Precalc<T> {
        inv: Vec<ModInt<T>>,
        fact: Vec<ModInt<T>>,
        ifact: Vec<ModInt<T>>,
    }
    #[allow(dead_code)]
    impl<T: Modulo> Precalc<T> {
        pub fn new(n: usize) -> Precalc<T> {
            let mut inv = vec![ModInt::one(); n + 1];
            let mut fact = vec![ModInt::one(); n + 1];
            let mut ifact = vec![ModInt::one(); n + 1];
            for i in 2..(n + 1) {
                fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
            }
            ifact[n] = fact[n].inv();
            if n > 0 {
                inv[n] = ifact[n] * fact[n - 1];
            }
            for i in (1..n).rev() {
                ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
                inv[i] = ifact[i] * fact[i - 1];
            }
            Precalc {
                inv: inv,
                fact: fact,
                ifact: ifact,
            }
        }
        pub fn inv(&self, n: usize) -> ModInt<T> {
            assert!(n > 0);
            self.inv[n]
        }
        pub fn fact(&self, n: usize) -> ModInt<T> {
            self.fact[n]
        }
        pub fn ifact(&self, n: usize) -> ModInt<T> {
            self.ifact[n]
        }
        pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
            if k > n {
                return ModInt::zero();
            }
            self.fact[n] * self.ifact[n - k]
        }
        pub fn comb(&self, n: usize, k: usize) -> ModInt<T> {
            if k > n {
                return ModInt::zero();
            }
            self.fact[n] * self.ifact[k] * self.ifact[n - k]
        }
    }
}
// ---------- end Precalc ----------

use modint::*;

pub trait NTTFriendly: modint::Modulo {
    fn order() -> usize;
    fn zeta() -> u32;
}

type M = ModInt<Mod998_244_353>;

impl NTTFriendly for Mod998_244_353 {
    fn order() -> usize {
        8388608
    }
    fn zeta() -> u32 {
        15311432
    }
}

// 列に対する命令をテキトーに詰めあわせ
// modint, primitive type の2つあたりで使うことを想定
// +, -, *
// zero を要求してないのに仮定してる場所がある
//
// 何も考えずに書き始めたらいろいろよくわからないことになった
// 整理
// 長さが等しいときの加算、減算、dot積はok
// 長さが異なるときはどうする?
// 0埋めされてるというイメージなので
// 加算、減算は素直だがdot積はイマイチ
// dot積だけ長さが等しいとしておく?
// あるいは0埋めのイメージを消すか

use std::ops::*;

pub trait Zero: Sized + Add<Output = Self> {
    fn zero() -> Self;
}

pub fn zero<T: Zero>() -> T {
    T::zero()
}

impl<T: Modulo> Zero for ModInt<T> {
    fn zero() -> Self {
        Self::zero()
    }
}

impl Zero for usize {
    fn zero() -> Self {
        0
    }
}

pub trait ArrayAdd {
    type Item;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayAdd for [T]
where
    T: Zero + Copy,
{
    type Item = T;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.add_assign(rhs);
        c
    }
}

pub trait ArrayAddAssign {
    type Item;
    fn add_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayAddAssign for [T]
where
    T: Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a);
    }
}

impl<T> ArrayAddAssign for Vec<T>
where
    T: Zero + Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().add_assign(rhs);
    }
}

pub trait ArraySub {
    type Item;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArraySub for [T]
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.sub_assign(rhs);
        c
    }
}

pub trait ArraySubAssign {
    type Item;
    fn sub_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArraySubAssign for [T]
where
    T: Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a);
    }
}

impl<T> ArraySubAssign for Vec<T>
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().sub_assign(rhs);
    }
}

pub trait ArrayDot {
    type Item;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayDot for [T]
where
    T: Mul<Output = T> + Copy,
{
    type Item = T;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        assert!(self.len() == rhs.len());
        self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect()
    }
}

pub trait ArrayDotAssign {
    type Item;
    fn dot_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayDotAssign for [T]
where
    T: MulAssign + Copy,
{
    type Item = T;
    fn dot_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() == rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a);
    }
}

pub trait ArrayMul {
    type Item;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayMul for [T]
where
    T: Zero + Mul<Output = T> + Copy,
{
    type Item = T;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.is_empty() || rhs.is_empty() {
            return vec![];
        }
        let mut res = vec![zero(); self.len() + rhs.len() - 1];
        for (i, a) in self.iter().enumerate() {
            for (c, b) in res[i..].iter_mut().zip(rhs) {
                *c = *c + *a * *b;
            }
        }
        res
    }
}

pub trait ArrayNTT {
    type Item;
    fn ntt(&mut self);
    fn intt(&mut self);
    fn multiply(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayNTT for [ModInt<T>]
where
    T: NTTFriendly,
{
    type Item = ModInt<T>;
    fn ntt(&mut self) {
        let f = self;
        let n = f.len();
        assert!(n.count_ones() == 1);
        assert!(n <= T::order());
        let len = n.trailing_zeros() as usize;
        let mut es = [ModInt::zero(); 30];
        let mut ies = [ModInt::zero(); 30];
        let mut sum_e = [ModInt::zero(); 30];
        let cnt2 = T::order().trailing_zeros() as usize;
        let mut e = ModInt::new_unchecked(T::zeta());
        let mut ie = e.inv();
        for i in (2..=cnt2).rev() {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e = e * e;
            ie = ie * ie;
        }
        let mut now = ModInt::one();
        for i in 0..(cnt2 - 1) {
            sum_e[i] = es[i] * now;
            now *= ies[i];
        }
        for ph in 1..=len {
            let p = 1 << (len - ph);
            let mut now = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y * now;
                    *x = l + r;
                    *y = l - r;
                }
                now *= sum_e[(!i).trailing_zeros() as usize];
            }
        }
    }
    fn intt(&mut self) {
        let f = self;
        let n = f.len();
        assert!(n.count_ones() == 1);
        assert!(n <= T::order());
        let len = n.trailing_zeros() as usize;
        let mut es = [ModInt::zero(); 30];
        let mut ies = [ModInt::zero(); 30];
        let mut sum_ie = [ModInt::zero(); 30];
        let cnt2 = T::order().trailing_zeros() as usize;
        let mut e = ModInt::new_unchecked(T::zeta());
        let mut ie = e.inv();
        for i in (2..=cnt2).rev() {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e = e * e;
            ie = ie * ie;
        }
        let mut now = ModInt::one();
        for i in 0..(cnt2 - 1) {
            sum_ie[i] = ies[i] * now;
            now *= es[i];
        }
        for ph in (1..=len).rev() {
            let p = 1 << (len - ph);
            let mut inow = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y;
                    *x = l + r;
                    *y = (l - r) * inow;
                }
                inow *= sum_ie[(!i).trailing_zeros() as usize];
            }
        }
        let ik = ModInt::new_unchecked((T::modulo() + 1) >> 1).pow(len as u64);
        for f in f.iter_mut() {
            *f *= ik;
        }
    }
    fn multiply(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.len().min(rhs.len()) <= 32 {
            return self.mul(rhs);
        }
        let size = (self.len() + rhs.len() - 1).next_power_of_two();
        let mut f = vec![ModInt::zero(); size];
        let mut g = vec![ModInt::zero(); size];
        f[..self.len()].copy_from_slice(self);
        g[..rhs.len()].copy_from_slice(rhs);
        f.ntt();
        g.ntt();
        f.dot_assign(&g);
        f.intt();
        f.truncate(self.len() + rhs.len() - 1);
        f
    }
}

pub trait PolynomialOperation {
    type Item;
    fn eval(&self, x: Self::Item) -> Self::Item;
    fn derivative(&self) -> Vec<Self::Item>;
    fn integral(&self) -> Vec<Self::Item>;
}

impl<T: Modulo> PolynomialOperation for [ModInt<T>] {
    type Item = ModInt<T>;
    fn eval(&self, x: Self::Item) -> Self::Item {
        self.iter().rev().fold(ModInt::zero(), |s, a| s * x + *a)
    }
    fn derivative(&self) -> Vec<Self::Item> {
        if self.len() <= 1 {
            return vec![];
        }
        self[1..]
            .iter()
            .enumerate()
            .map(|(k, a)| ModInt::new_unchecked(k as u32 + 1) * *a)
            .collect()
    }
    fn integral(&self) -> Vec<Self::Item> {
        if self.is_empty() {
            return vec![];
        }
        let mut inv = vec![ModInt::one(); self.len() + 1];
        let mut mul = ModInt::zero();
        for i in 1..=self.len() {
            mul += ModInt::one();
            inv[i] = inv[i - 1] * mul;
        }
        let mut prod = inv[self.len()].inv();
        for i in (1..=self.len()).rev() {
            inv[i] = self[i - 1] * inv[i - 1] * prod;
            prod *= mul;
            mul -= ModInt::one();
        }
        inv[0] = ModInt::zero();
        inv
    }
}

pub trait FPSOperation {
    type Item;
    fn inverse(&self, n: usize) -> Vec<Self::Item>;
    fn div_rem(&self, rhs: &Self) -> (Vec<Self::Item>, Vec<Self::Item>);
    fn rem(&self, rhs: &Self) -> Vec<Self::Item>;
    fn div(&self, rhs: &Self) -> Vec<Self::Item>;
    fn log(&self, n: usize) -> Vec<Self::Item>;
    fn exp(&self, n: usize) -> Vec<Self::Item>;
}

impl<T: NTTFriendly> FPSOperation for [ModInt<T>] {
    type Item = ModInt<T>;
    fn inverse(&self, n: usize) -> Vec<Self::Item> {
        assert!(self.len() > 0 && !self[0].is_zero());
        let len = n.next_power_of_two();
        assert!(2 * len <= T::order());
        let mut b = vec![ModInt::zero(); n];
        b[0] = self[0].inv();
        let mut f = Vec::with_capacity(2 * len);
        let mut g = Vec::with_capacity(2 * len);
        let mut size = 1;
        while size < n {
            g.clear();
            g.extend(b.iter().take(size));
            g.resize(2 * size, ModInt::zero());
            f.clear();
            f.extend(self.iter().take(2 * size));
            f.resize(2 * size, ModInt::zero());
            f.ntt();
            g.ntt();
            f.dot_assign(&g);
            f.intt();
            f[..size].iter_mut().for_each(|f| *f = ModInt::zero());
            f.ntt();
            f.dot_assign(&g);
            f.intt();
            for (b, g) in b[size..].iter_mut().zip(&f[size..]) {
                *b = *b - *g;
            }
            size *= 2;
        }
        b
    }
    fn div(&self, rhs: &Self) -> Vec<Self::Item> {
        assert!(!rhs.last().unwrap().is_zero());
        let n = self.len();
        let m = rhs.len();
        assert!(m > 0);
        if n < m {
            return vec![];
        }
        if m <= 64 {
            let mut a = Vec::from(self);
            let inv = rhs[m - 1].inv();
            let mut div = Vec::with_capacity(n - m + 1);
            for i in ((m - 1)..n).rev() {
                let p = inv * a[i];
                div.push(p);
                for (a, rhs) in a[..=i].iter_mut().rev().zip(rhs.iter().rev()) {
                    *a -= *rhs * p;
                }
            }
            div.reverse();
            return div;
        }
        let mut a = Vec::from(self);
        a.reverse();
        a.truncate(n - m + 1);
        let mut b = Vec::from(rhs);
        b.reverse();
        let ib = b.inverse(n - m + 1);
        let mut id = a.multiply(&ib);
        id.truncate(n - m + 1);
        let mut div = id.clone();
        div.reverse();
        div
    }
    fn div_rem(&self, rhs: &Self) -> (Vec<Self::Item>, Vec<Self::Item>) {
        let div = self.div(rhs);
        let mut rem = self.sub(&rhs.multiply(&div));
        rem.truncate(rhs.len() - 1);
        (div, rem)
    }
    fn rem(&self, rhs: &Self) -> Vec<Self::Item> {
        self.div_rem(rhs).1
    }
    fn log(&self, n: usize) -> Vec<Self::Item> {
        assert!(self.get(0).map_or(false, |p| p.get() == 1));
        let mut b = self.derivative().multiply(&self.inverse(n));
        b.truncate(n - 1);
        let mut b = b.integral();
        b.resize(n, ModInt::zero());
        b
    }
    fn exp(&self, n: usize) -> Vec<Self::Item> {
        assert!(self.get(0).map_or(true, |a| a.is_zero()));
        assert!(n <= T::order());
        let mut b = vec![ModInt::one()];
        let mut size = 1;
        while size < n {
            size <<= 1;
            let f = b.log(size);
            let g = self[..self.len().min(size)].sub(&f);
            b = b.multiply(&g).add(&b);
            b.truncate(size);
        }
        b.truncate(n);
        b.resize(n, ModInt::zero());
        b
    }
}

// test
//  yuki907: https://yukicoder.me/submissions/712523
//  hhkb2020: https://atcoder.jp/contests/hhkb2020/submissions/26997806
//
0