結果
| 問題 |
No.2169 To Arithmetic
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2022-12-21 00:44:56 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,661 bytes |
| コンパイル時間 | 2,469 ms |
| コンパイル使用メモリ | 211,208 KB |
| 最終ジャッジ日時 | 2025-02-09 17:45:22 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 6 WA * 19 |
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <typename Abelian>
struct FenwickTreeSupportingRangeAddQuery {
explicit FenwickTreeSupportingRangeAddQuery(
const int n_, const Abelian ID = 0)
: n(n_ + 1), ID(ID) {
data_const.assign(n, ID);
data_linear.assign(n, ID);
}
void add(int left, const int right, const Abelian val) {
if (right < ++left) return;
for (int i = left; i < n; i += i & -i) {
data_const[i] -= val * (left - 1);
data_linear[i] += val;
}
for (int i = right + 1; i < n; i += i & -i) {
data_const[i] += val * right;
data_linear[i] -= val;
}
}
Abelian sum(const int idx) const {
Abelian res = ID;
for (int i = idx; i > 0; i -= i & -i) {
res += data_linear[i];
}
res *= idx;
for (int i = idx; i > 0; i -= i & -i) {
res += data_const[i];
}
return res;
}
Abelian sum(const int left, const int right) const {
return left < right ? sum(right) - sum(left) : ID;
}
Abelian operator[](const int idx) const { return sum(idx, idx + 1); }
private:
const int n;
const Abelian ID;
std::vector<Abelian> data_const, data_linear;
};
vector<ll> solve(vector<ll> a, const vector<int>& ds) {
const int m = ds.size();
if (m == 0) return {};
const int n = a.size();
for (int i = n - 1; i >= 0; --i) {
a[i] -= a.front();
}
FenwickTreeSupportingRangeAddQuery<ll> num(m), bit(m);
FOR(i, 1, n) {
const ll d = a[i] - a[i - 1];
const int l = distance(ds.begin(), lower_bound(ALL(ds), d));
num.add(l, m, 1);
bit.add(l, m, d);
}
vector<ll> cnst(m, 0);
vector<int> inc{0};
FOR(i, 1, n) {
if (a[inc.back()] < a[i]) inc.emplace_back(i);
}
REP(i, m) {
while (inc.size() >= 2 && 1LL * ds[i] * (inc.back() - inc.end()[-2]) > a[inc.back()] - a[inc.end()[-2]]) inc.pop_back();
cnst[i] += a[inc.back()] - 1LL * ds[i] * inc.back();
}
REP(i, n) a[i] -= a.back();
inc = vector<int>{n - 1};
for (int i = n - 2; i >= 0; --i) {
if (a[inc.back()] < a[i]) inc.emplace_back(i);
}
vector<ll> ans(m, 0);
REP(i, m) ans[i] = num[i] * ds[i] - bit[i] + cnst[i];
return ans;
}
int main() {
int n, q; cin >> n >> q;
vector<ll> a(n); REP(i, n) cin >> a[i];
vector<int> d(q); REP(i, q) cin >> d[i];
vector<int> neg, pos;
for (const int d_i : set<int>(ALL(d))) {
(d_i < 0 ? neg : pos).emplace_back(d_i);
}
const vector<ll> ans_pos = solve(a, pos);
reverse(ALL(a));
reverse(ALL(neg));
for (int& d_i : neg) d_i = -d_i;
const vector<ll> ans_neg = solve(a, neg);
REP(i, q) {
if (d[i] < 0) {
cout << ans_neg[distance(neg.begin(), lower_bound(ALL(neg), -d[i]))] << '\n';
} else {
cout << ans_pos[distance(pos.begin(), lower_bound(ALL(pos), d[i]))] << '\n';
}
}
return 0;
}
emthrm