結果
| 問題 |
No.1983 [Cherry 4th Tune C] 南の島のマーメイド
|
| コンテスト | |
| ユーザー |
Nachia
|
| 提出日時 | 2022-12-22 00:28:52 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 15,695 bytes |
| コンパイル時間 | 1,317 ms |
| コンパイル使用メモリ | 85,900 KB |
| 最終ジャッジ日時 | 2025-02-09 18:17:33 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 14 RE * 27 |
ソースコード
#line 2 "nachia\\graph\\graph.hpp"
#include <vector>
#include <utility>
#include <cassert>
#line 4 "nachia\\array\\csr-array.hpp"
#include <algorithm>
namespace nachia{
template<class Elem>
class CsrArray{
public:
struct ListRange{
using iterator = typename std::vector<Elem>::iterator;
iterator begi, endi;
iterator begin() const { return begi; }
iterator end() const { return endi; }
int size() const { return (int)std::distance(begi, endi); }
Elem& operator[](int i) const { return begi[i]; }
};
struct ConstListRange{
using iterator = typename std::vector<Elem>::const_iterator;
iterator begi, endi;
iterator begin() const { return begi; }
iterator end() const { return endi; }
int size() const { return (int)std::distance(begi, endi); }
const Elem& operator[](int i) const { return begi[i]; }
};
private:
int m_n;
std::vector<Elem> m_list;
std::vector<int> m_pos;
public:
CsrArray() : m_n(0), m_list(), m_pos() {}
static CsrArray Construct(int n, std::vector<std::pair<int, Elem>> items){
CsrArray res;
res.m_n = n;
std::vector<int> buf(n+1, 0);
for(auto& [u,v] : items){ ++buf[u]; }
for(int i=1; i<=n; i++) buf[i] += buf[i-1];
res.m_list.resize(buf[n]);
for(int i=(int)items.size()-1; i>=0; i--){
res.m_list[--buf[items[i].first]] = std::move(items[i].second);
}
res.m_pos = std::move(buf);
return res;
}
static CsrArray FromRaw(std::vector<Elem> list, std::vector<int> pos){
CsrArray res;
res.m_n = pos.size() - 1;
res.m_list = std::move(list);
res.m_pos = std::move(pos);
return res;
}
ListRange operator[](int u) { return ListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; }
ConstListRange operator[](int u) const { return ConstListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; }
int size() const { return m_n; }
int fullSize() const { return (int)m_list.size(); }
};
} // namespace nachia
#line 6 "nachia\\graph\\graph.hpp"
namespace nachia{
struct Graph {
public:
struct Edge{
int from, to;
void reverse(){ std::swap(from, to); }
};
using Base = std::vector<std::pair<int, int>>;
Graph(int n = 0, bool undirected = false) : m_n(n), m_e(), m_isUndir(undirected) {}
Graph(int n, const std::vector<std::pair<int, int>>& edges, bool undirected = false) : m_n(n), m_isUndir(undirected){
m_e.resize(edges.size());
for(std::size_t i=0; i<edges.size(); i++) m_e[i] = { edges[i].first, edges[i].second };
}
Graph(int n, const std::vector<Edge>& edges, bool undirected = false) : m_n(n), m_e(edges), m_isUndir(undirected) {}
Graph(int n, std::vector<Edge>&& edges, bool undirected = false) : m_n(n), m_e(edges), m_isUndir(undirected) {}
int numVertices() const noexcept { return m_n; }
int numEdges() const noexcept { return int(m_e.size()); }
int addNode() noexcept { return m_n++; }
int addEdge(int from, int to){ m_e.push_back({ from, to }); return numEdges() - 1; }
Edge& operator[](int ei) noexcept { return m_e[ei]; }
const Edge& operator[](int ei) const noexcept { return m_e[ei]; }
Edge& at(int ei) { return m_e.at(ei); }
const Edge& at(int ei) const { return m_e.at(ei); }
auto begin(){ return m_e.begin(); }
auto end(){ return m_e.end(); }
auto begin() const { return m_e.begin(); }
auto end() const { return m_e.end(); }
bool isUndirected() const noexcept { return m_isUndir; }
void reverseEdges() noexcept { for(auto& e : m_e) e.reverse(); }
void contract(int newV, const std::vector<int>& mapping){
assert(numVertices() == int(mapping.size()));
for(int i=0; i<numVertices(); i++) assert(0 <= mapping[i] && mapping[i] < newV);
for(auto& e : m_e){ e.from = mapping[e.from]; e.to = mapping[e.to]; }
}
std::vector<Graph> induce(int num, const std::vector<int>& mapping) const {
int n = numVertices();
assert(n == int(mapping.size()));
for(int i=0; i<n; i++) assert(-1 <= mapping[i] && mapping[i] < num);
std::vector<int> indexV(n), newV(num);
for(int i=0; i<n; i++) if(mapping[i] >= 0) indexV[i] = newV[mapping[i]]++;
std::vector<Graph> res; res.reserve(num);
for(int i=0; i<num; i++) res.emplace_back(newV[i], isUndirected());
for(auto e : m_e) if(mapping[e.from] == mapping[e.to] && mapping[e.to] >= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]);
return res;
}
CsrArray<int> getEdgeIndexArray(bool undirected) const {
std::vector<std::pair<int, int>> src;
src.reserve(numEdges() * (undirected ? 2 : 1));
for(int i=0; i<numEdges(); i++){
auto e = operator[](i);
src.emplace_back(e.from, i);
if(undirected) src.emplace_back(e.to, i);
}
return CsrArray<int>::Construct(numVertices(), src);
}
CsrArray<int> getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); }
CsrArray<int> getAdjacencyArray(bool undirected) const {
std::vector<std::pair<int, int>> src;
src.reserve(numEdges() * (undirected ? 2 : 1));
for(auto e : m_e){
src.emplace_back(e.from, e.to);
if(undirected) src.emplace_back(e.to, e.from);
}
return CsrArray<int>::Construct(numVertices(), src);
}
CsrArray<int> getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); }
private:
int m_n;
std::vector<Edge> m_e;
bool m_isUndir;
};
} // namespace nachia
#line 3 "nachia\\graph\\dfs-tree.hpp"
namespace nachia{
struct DfsTree{
std::vector<int> dfsOrd;
std::vector<int> parent;
template<bool OutOrd>
static DfsTree Construct(const CsrArray<int>& adj, int root = 0){
DfsTree res;
int n = adj.size();
res.dfsOrd.resize(n);
int Oi = 0;
std::vector<int> eid(n, 0), parent(n, -2);
for(int s=root; Oi<n; s++) if(parent[s] == -2){
int p = s;
if(p >= n) p -= n;
parent[p] = -1;
while(0 <= p){
if(eid[p] == (OutOrd ? (int)adj[p].size() : 0)) res.dfsOrd[Oi++] = p;
if(eid[p] == (int)adj[p].size()){ p = parent[p]; continue; }
int nx = adj[p][eid[p]++];
if(parent[nx] != -2) continue;
parent[nx] = p;
p = nx;
}
s++; if(s == n) s=0;
}
res.parent = std::move(parent);
return res;
}
template<bool OutOrd>
static DfsTree Construct(const Graph& g, int root = 0){ return Construct<OutOrd>(g.getAdjacencyArray(), root); }
};
} // namespace nachia
#line 7 "nachia\\graph\\two-edge-connected-components.hpp"
namespace nachia{
struct TwoEdgeConnectedComponents{
Graph mG;
int m_numComponent;
std::vector<int> m_color;
TwoEdgeConnectedComponents(Graph G = Graph(0, true)){
assert(G.isUndirected());
int n = G.numVertices(), m = G.numEdges();
if(n == 0){ mG = G; m_numComponent = 0; return; }
std::vector<int> P, ord, I(n); {
auto dfsTree = DfsTree::Construct<false>(G);
P = std::move(dfsTree.parent);
ord = std::move(dfsTree.dfsOrd);
for(int i=0; i<n; i++) I[ord[i]] = i;
}
std::vector<int> rev = I, PE(n, -1);
for(int e=0; e<m; e++){
int v = G[e].from, w = G[e].to;
if(I[v] < I[w]) std::swap(v, w);
if(P[v] == w && PE[v] < 0){ PE[v] = e; }
else rev[v] = std::min(rev[v], I[w]);
}
for(int i=n-1; i>=0; i--){
int v = ord[i], w = P[v];
if(w >= 0) rev[w] = std::min(rev[w], rev[v]);
}
m_numComponent = 0;
m_color.resize(n);
for(int v : ord){
if(rev[v] == I[v]) m_color[v] = m_numComponent++;
else m_color[v] = m_color[P[v]];
}
mG = std::move(G);
}
int numComponents() const noexcept { return m_numComponent; }
CsrArray<int> getTeccVertices() const {
int n = mG.numVertices();
std::vector<std::pair<int, int>> res(n);
for(int i=0; i<n; i++) res[i] = { m_color[i], i };
return CsrArray<int>::Construct(numComponents(), res);
}
// bridge : -1
std::vector<int> getEdgeMapping() const {
std::vector<int> res(mG.numEdges(), -1);
for(int i=0; i<mG.numEdges(); i++) if(m_color[mG[i].from] == m_color[mG[i].to]) res[i] = m_color[mG[i].from];
return res;
}
};
}
#line 5 "nachia\\graph\\connected-components.hpp"
namespace nachia{
struct ConnectedComponents{
ConnectedComponents(const CsrArray<int>& adj){
int n = adj.size();
std::vector<int> res(n, -1), O(n);
int Ci = 0, p1 = 0, p0 = 0;
for(int i=0; i<n; i++) if(res[i] < 0){
res[i] = Ci++; O[p1++] = i;
for( ; p0<p1; p0++){
int v = O[p0];
for(int w : adj[v]) if(res[w] < 0){
res[w] = res[v];
O[p1++] = w;
}
}
}
m_color = std::move(res);
m_numC = Ci;
}
ConnectedComponents(const Graph& G = Graph(0, true)) : ConnectedComponents(G.getAdjacencyArray(true)) {}
int numComponents() const noexcept { return m_numC; }
const std::vector<int>& getMapping() const { return m_color; }
private:
int m_numC;
std::vector<int> m_color;
};
} // namespace nachia
#line 2 "nachia\\misc\\fastio.hpp"
#include <cstdio>
#include <cctype>
#include <cstdint>
#include <string>
namespace nachia{
struct CInStream{
private:
static const unsigned int INPUT_BUF_SIZE = 1 << 17;
unsigned int p = INPUT_BUF_SIZE;
static char Q[INPUT_BUF_SIZE];
public:
using MyType = CInStream;
char seekChar() noexcept {
if(p == INPUT_BUF_SIZE){
size_t len = fread(Q, 1, INPUT_BUF_SIZE, stdin);
if(len != INPUT_BUF_SIZE) Q[len] = '\0';
p = 0;
}
return Q[p];
}
void skipSpace() noexcept { while(isspace(seekChar())) p++; }
uint32_t nextU32() noexcept {
skipSpace();
uint32_t buf = 0;
while(true){
char tmp = seekChar();
if('9' < tmp || tmp < '0') break;
buf = buf * 10 + (tmp - '0');
p++;
}
return buf;
}
int32_t nextI32() noexcept {
skipSpace();
if(seekChar() == '-'){ p++; return (int32_t)(-nextU32()); }
return (int32_t)nextU32();
}
uint64_t nextU64() noexcept {
skipSpace();
uint64_t buf = 0;
while(true){
char tmp = seekChar();
if('9' < tmp || tmp < '0') break;
buf = buf * 10 + (tmp - '0');
p++;
}
return buf;
}
int64_t nextI64() noexcept {
skipSpace();
if(seekChar() == '-'){ p++; return (int64_t)(-nextU64()); }
return (int64_t)nextU64();
}
char nextChar() noexcept { skipSpace(); char buf = seekChar(); p++; return buf; }
std::string nextToken(){
skipSpace();
std::string buf;
while(true){
char ch = seekChar();
if(isspace(ch) || ch == '\0') break;
buf.push_back(ch);
p++;
}
return buf;
}
MyType& operator>>(unsigned int& dest) noexcept { dest = nextU32(); return *this; }
MyType& operator>>(int& dest) noexcept { dest = nextI32(); return *this; }
MyType& operator>>(unsigned long& dest) noexcept { dest = nextU64(); return *this; }
MyType& operator>>(long& dest) noexcept { dest = nextI64(); return *this; }
MyType& operator>>(unsigned long long& dest) noexcept { dest = nextU64(); return *this; }
MyType& operator>>(long long& dest) noexcept { dest = nextI64(); return *this; }
MyType& operator>>(std::string& dest){ dest = nextToken(); return *this; }
MyType& operator>>(char& dest) noexcept { dest = nextChar(); return *this; }
} cin;
struct FastOutputTable{
char LZ[1000][4] = {};
char NLZ[1000][4] = {};
constexpr FastOutputTable(){
using u32 = uint_fast32_t;
for(u32 d=0; d<1000; d++){
LZ[d][0] = ('0' + d / 100 % 10);
LZ[d][1] = ('0' + d / 10 % 10);
LZ[d][2] = ('0' + d / 1 % 10);
LZ[d][3] = '\0';
}
for(u32 d=0; d<1000; d++){
u32 i = 0;
if(d >= 100) NLZ[d][i++] = ('0' + d / 100 % 10);
if(d >= 10) NLZ[d][i++] = ('0' + d / 10 % 10);
if(d >= 1) NLZ[d][i++] = ('0' + d / 1 % 10);
NLZ[d][i++] = '\0';
}
}
};
struct COutStream{
private:
using u32 = uint32_t;
using u64 = uint64_t;
using MyType = COutStream;
static const u32 OUTPUT_BUF_SIZE = 1 << 17;
static char Q[OUTPUT_BUF_SIZE];
static constexpr FastOutputTable TB = FastOutputTable();
u32 p = 0;
static constexpr u32 P10(u32 d){ return d ? P10(d-1)*10 : 1; }
static constexpr u64 P10L(u32 d){ return d ? P10L(d-1)*10 : 1; }
template<class T, class U> static void Fil(T& m, U& l, U x) noexcept { m = l/x; l -= m*x; }
void next_dig9(u32 x){
u32 y;
Fil(y, x, P10(6));
nextCstr(TB.LZ[y]);
Fil(y, x, P10(3));
nextCstr(TB.LZ[y]); nextCstr(TB.LZ[x]);
}
public:
void nextChar(char c){
Q[p++] = c;
if(p == OUTPUT_BUF_SIZE){ fwrite(Q, p, 1, stdout); p = 0; }
}
void nextEoln(){ nextChar('\n'); }
void nextCstr(const char* s){ while(*s) nextChar(*(s++)); }
void nextU32(uint32_t x){
u32 y = 0;
if(x >= P10(9)){
Fil(y, x, P10(9));
nextCstr(TB.NLZ[y]); next_dig9(x);
}
else if(x >= P10(6)){
Fil(y, x, P10(6));
nextCstr(TB.NLZ[y]);
Fil(y, x, P10(3));
nextCstr(TB.LZ[y]); nextCstr(TB.LZ[x]);
}
else if(x >= P10(3)){
Fil(y, x, P10(3));
nextCstr(TB.NLZ[y]); nextCstr(TB.LZ[x]);
}
else if(x >= 1) nextCstr(TB.NLZ[x]);
else nextChar('0');
}
void nextI32(int32_t x){
if(x >= 0) nextU32(x);
else{ nextChar('-'); nextU32((u32)-x); }
}
void nextU64(uint64_t x){
u32 y = 0;
if(x >= P10L(18)){
Fil(y, x, P10L(18));
nextU32(y);
Fil(y, x, P10L(9));
next_dig9(y); next_dig9(x);
}
else if(x >= P10L(9)){
Fil(y, x, P10L(9));
nextU32(y); next_dig9(x);
}
else nextU32(x);
}
void nextI64(int64_t x){
if(x >= 0) nextU64(x);
else{ nextChar('-'); nextU64((u64)-x); }
}
void writeToFile(bool flush = false){
fwrite(Q, p, 1, stdout);
if(flush) fflush(stdout);
p = 0;
}
COutStream(){ Q[0] = 0; }
~COutStream(){ writeToFile(); }
MyType& operator<<(unsigned int tg){ nextU32(tg); return *this; }
MyType& operator<<(unsigned long tg){ nextU64(tg); return *this; }
MyType& operator<<(unsigned long long tg){ nextU64(tg); return *this; }
MyType& operator<<(int tg){ nextI32(tg); return *this; }
MyType& operator<<(long tg){ nextI64(tg); return *this; }
MyType& operator<<(long long tg){ nextI64(tg); return *this; }
MyType& operator<<(const std::string& tg){ nextCstr(tg.c_str()); return *this; }
MyType& operator<<(const char* tg){ nextCstr(tg); return *this; }
MyType& operator<<(char tg){ nextChar(tg); return *this; }
} cout;
char CInStream::Q[INPUT_BUF_SIZE];
char COutStream::Q[OUTPUT_BUF_SIZE];
} // namespace nachia
#line 4 "Main.cpp"
int main(){
using nachia::cin;
using nachia::cout;
int N; cin >> N;
int M; cin >> M;
int Q; cin >> Q;
nachia::Graph graph(N, true);
for(int i=0; i<M; i++){
int u; cin >> u; u--;
int v; cin >> v; v--;
graph.addEdge(u, v);
}
auto tecc = nachia::TwoEdgeConnectedComponents(graph).getEdgeMapping();
nachia::Graph graph2(N, true);
for(int i=0; i<M; i++) if(tecc[i] == -1) graph2.addEdge(graph[i].from, graph[i].to);
auto con = nachia::ConnectedComponents(graph2).getMapping();
for(int i=0; i<Q; i++){
int u; cin >> u; u--;
int v; cin >> v; v--;
bool ans = con[u] == con[v];
cout << (ans ? "Yes\n" : "No\n");
}
return 0;
}
Nachia