結果
問題 | No.1983 [Cherry 4th Tune C] 南の島のマーメイド |
ユーザー | 👑 Nachia |
提出日時 | 2022-12-22 00:33:35 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 65 ms / 4,000 ms |
コード長 | 15,682 bytes |
コンパイル時間 | 930 ms |
コンパイル使用メモリ | 86,752 KB |
実行使用メモリ | 16,888 KB |
最終ジャッジ日時 | 2024-11-18 03:11:39 |
合計ジャッジ時間 | 4,979 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,248 KB |
testcase_03 | AC | 1 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 1 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 3 ms
5,248 KB |
testcase_10 | AC | 4 ms
5,248 KB |
testcase_11 | AC | 4 ms
5,248 KB |
testcase_12 | AC | 3 ms
5,248 KB |
testcase_13 | AC | 31 ms
8,268 KB |
testcase_14 | AC | 36 ms
10,448 KB |
testcase_15 | AC | 46 ms
9,800 KB |
testcase_16 | AC | 21 ms
7,396 KB |
testcase_17 | AC | 38 ms
11,468 KB |
testcase_18 | AC | 41 ms
9,804 KB |
testcase_19 | AC | 53 ms
13,388 KB |
testcase_20 | AC | 42 ms
9,296 KB |
testcase_21 | AC | 41 ms
11,212 KB |
testcase_22 | AC | 48 ms
14,488 KB |
testcase_23 | AC | 64 ms
15,304 KB |
testcase_24 | AC | 65 ms
15,296 KB |
testcase_25 | AC | 63 ms
15,316 KB |
testcase_26 | AC | 63 ms
15,380 KB |
testcase_27 | AC | 64 ms
15,308 KB |
testcase_28 | AC | 63 ms
15,308 KB |
testcase_29 | AC | 62 ms
15,384 KB |
testcase_30 | AC | 64 ms
15,380 KB |
testcase_31 | AC | 63 ms
15,308 KB |
testcase_32 | AC | 64 ms
15,312 KB |
testcase_33 | AC | 1 ms
5,248 KB |
testcase_34 | AC | 20 ms
7,544 KB |
testcase_35 | AC | 36 ms
15,292 KB |
testcase_36 | AC | 35 ms
15,304 KB |
testcase_37 | AC | 2 ms
5,248 KB |
testcase_38 | AC | 9 ms
5,248 KB |
testcase_39 | AC | 46 ms
16,888 KB |
testcase_40 | AC | 50 ms
16,856 KB |
ソースコード
#line 2 "nachia\\graph\\graph.hpp" #include <vector> #include <utility> #include <cassert> #line 4 "nachia\\array\\csr-array.hpp" #include <algorithm> namespace nachia{ template<class Elem> class CsrArray{ public: struct ListRange{ using iterator = typename std::vector<Elem>::iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } Elem& operator[](int i) const { return begi[i]; } }; struct ConstListRange{ using iterator = typename std::vector<Elem>::const_iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } const Elem& operator[](int i) const { return begi[i]; } }; private: int m_n; std::vector<Elem> m_list; std::vector<int> m_pos; public: CsrArray() : m_n(0), m_list(), m_pos() {} static CsrArray Construct(int n, std::vector<std::pair<int, Elem>> items){ CsrArray res; res.m_n = n; std::vector<int> buf(n+1, 0); for(auto& [u,v] : items){ ++buf[u]; } for(int i=1; i<=n; i++) buf[i] += buf[i-1]; res.m_list.resize(buf[n]); for(int i=(int)items.size()-1; i>=0; i--){ res.m_list[--buf[items[i].first]] = std::move(items[i].second); } res.m_pos = std::move(buf); return res; } static CsrArray FromRaw(std::vector<Elem> list, std::vector<int> pos){ CsrArray res; res.m_n = pos.size() - 1; res.m_list = std::move(list); res.m_pos = std::move(pos); return res; } ListRange operator[](int u) { return ListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } ConstListRange operator[](int u) const { return ConstListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } int size() const { return m_n; } int fullSize() const { return (int)m_list.size(); } }; } // namespace nachia #line 6 "nachia\\graph\\graph.hpp" namespace nachia{ struct Graph { public: struct Edge{ int from, to; void reverse(){ std::swap(from, to); } }; using Base = std::vector<std::pair<int, int>>; Graph(int n = 0, bool undirected = false) : m_n(n), m_e(), m_isUndir(undirected) {} Graph(int n, const std::vector<std::pair<int, int>>& edges, bool undirected = false) : m_n(n), m_isUndir(undirected){ m_e.resize(edges.size()); for(std::size_t i=0; i<edges.size(); i++) m_e[i] = { edges[i].first, edges[i].second }; } Graph(int n, const std::vector<Edge>& edges, bool undirected = false) : m_n(n), m_e(edges), m_isUndir(undirected) {} Graph(int n, std::vector<Edge>&& edges, bool undirected = false) : m_n(n), m_e(edges), m_isUndir(undirected) {} int numVertices() const noexcept { return m_n; } int numEdges() const noexcept { return int(m_e.size()); } int addNode() noexcept { return m_n++; } int addEdge(int from, int to){ m_e.push_back({ from, to }); return numEdges() - 1; } Edge& operator[](int ei) noexcept { return m_e[ei]; } const Edge& operator[](int ei) const noexcept { return m_e[ei]; } Edge& at(int ei) { return m_e.at(ei); } const Edge& at(int ei) const { return m_e.at(ei); } auto begin(){ return m_e.begin(); } auto end(){ return m_e.end(); } auto begin() const { return m_e.begin(); } auto end() const { return m_e.end(); } bool isUndirected() const noexcept { return m_isUndir; } void reverseEdges() noexcept { for(auto& e : m_e) e.reverse(); } void contract(int newV, const std::vector<int>& mapping){ assert(numVertices() == int(mapping.size())); for(int i=0; i<numVertices(); i++) assert(0 <= mapping[i] && mapping[i] < newV); for(auto& e : m_e){ e.from = mapping[e.from]; e.to = mapping[e.to]; } } std::vector<Graph> induce(int num, const std::vector<int>& mapping) const { int n = numVertices(); assert(n == int(mapping.size())); for(int i=0; i<n; i++) assert(-1 <= mapping[i] && mapping[i] < num); std::vector<int> indexV(n), newV(num); for(int i=0; i<n; i++) if(mapping[i] >= 0) indexV[i] = newV[mapping[i]]++; std::vector<Graph> res; res.reserve(num); for(int i=0; i<num; i++) res.emplace_back(newV[i], isUndirected()); for(auto e : m_e) if(mapping[e.from] == mapping[e.to] && mapping[e.to] >= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]); return res; } CsrArray<int> getEdgeIndexArray(bool undirected) const { std::vector<std::pair<int, int>> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(int i=0; i<numEdges(); i++){ auto e = operator[](i); src.emplace_back(e.from, i); if(undirected) src.emplace_back(e.to, i); } return CsrArray<int>::Construct(numVertices(), src); } CsrArray<int> getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); } CsrArray<int> getAdjacencyArray(bool undirected) const { std::vector<std::pair<int, int>> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(auto e : m_e){ src.emplace_back(e.from, e.to); if(undirected) src.emplace_back(e.to, e.from); } return CsrArray<int>::Construct(numVertices(), src); } CsrArray<int> getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); } private: int m_n; std::vector<Edge> m_e; bool m_isUndir; }; } // namespace nachia #line 3 "nachia\\graph\\dfs-tree.hpp" namespace nachia{ struct DfsTree{ std::vector<int> dfsOrd; std::vector<int> parent; template<bool OutOrd> static DfsTree Construct(const CsrArray<int>& adj, int root = 0){ DfsTree res; int n = adj.size(); res.dfsOrd.resize(n); int Oi = 0; std::vector<int> eid(n, 0), parent(n, -2); for(int s=root; Oi<n; s == n-1 ? s=0 : ++s) if(parent[s] == -2){ int p = s; parent[p] = -1; while(0 <= p){ if(eid[p] == (OutOrd ? (int)adj[p].size() : 0)) res.dfsOrd[Oi++] = p; if(eid[p] == (int)adj[p].size()){ p = parent[p]; continue; } int nx = adj[p][eid[p]++]; if(parent[nx] != -2) continue; parent[nx] = p; p = nx; } s++; if(s == n) s=0; } res.parent = std::move(parent); return res; } template<bool OutOrd> static DfsTree Construct(const Graph& g, int root = 0){ return Construct<OutOrd>(g.getAdjacencyArray(), root); } }; } // namespace nachia #line 7 "nachia\\graph\\two-edge-connected-components.hpp" namespace nachia{ struct TwoEdgeConnectedComponents{ Graph mG; int m_numComponent; std::vector<int> m_color; TwoEdgeConnectedComponents(Graph G = Graph(0, true)){ assert(G.isUndirected()); int n = G.numVertices(), m = G.numEdges(); if(n == 0){ mG = G; m_numComponent = 0; return; } std::vector<int> P, ord, I(n); { auto dfsTree = DfsTree::Construct<false>(G); P = std::move(dfsTree.parent); ord = std::move(dfsTree.dfsOrd); for(int i=0; i<n; i++) I[ord[i]] = i; } std::vector<int> rev = I, PE(n, -1); for(int e=0; e<m; e++){ int v = G[e].from, w = G[e].to; if(I[v] < I[w]) std::swap(v, w); if(P[v] == w && PE[v] < 0){ PE[v] = e; } else rev[v] = std::min(rev[v], I[w]); } for(int i=n-1; i>=0; i--){ int v = ord[i], w = P[v]; if(w >= 0) rev[w] = std::min(rev[w], rev[v]); } m_numComponent = 0; m_color.resize(n); for(int v : ord){ if(rev[v] == I[v]) m_color[v] = m_numComponent++; else m_color[v] = m_color[P[v]]; } mG = std::move(G); } int numComponents() const noexcept { return m_numComponent; } CsrArray<int> getTeccVertices() const { int n = mG.numVertices(); std::vector<std::pair<int, int>> res(n); for(int i=0; i<n; i++) res[i] = { m_color[i], i }; return CsrArray<int>::Construct(numComponents(), res); } // bridge : -1 std::vector<int> getEdgeMapping() const { std::vector<int> res(mG.numEdges(), -1); for(int i=0; i<mG.numEdges(); i++) if(m_color[mG[i].from] == m_color[mG[i].to]) res[i] = m_color[mG[i].from]; return res; } }; } #line 5 "nachia\\graph\\connected-components.hpp" namespace nachia{ struct ConnectedComponents{ ConnectedComponents(const CsrArray<int>& adj){ int n = adj.size(); std::vector<int> res(n, -1), O(n); int Ci = 0, p1 = 0, p0 = 0; for(int i=0; i<n; i++) if(res[i] < 0){ res[i] = Ci++; O[p1++] = i; for( ; p0<p1; p0++){ int v = O[p0]; for(int w : adj[v]) if(res[w] < 0){ res[w] = res[v]; O[p1++] = w; } } } m_color = std::move(res); m_numC = Ci; } ConnectedComponents(const Graph& G = Graph(0, true)) : ConnectedComponents(G.getAdjacencyArray(true)) {} int numComponents() const noexcept { return m_numC; } const std::vector<int>& getMapping() const { return m_color; } private: int m_numC; std::vector<int> m_color; }; } // namespace nachia #line 2 "nachia\\misc\\fastio.hpp" #include <cstdio> #include <cctype> #include <cstdint> #include <string> namespace nachia{ struct CInStream{ private: static const unsigned int INPUT_BUF_SIZE = 1 << 17; unsigned int p = INPUT_BUF_SIZE; static char Q[INPUT_BUF_SIZE]; public: using MyType = CInStream; char seekChar() noexcept { if(p == INPUT_BUF_SIZE){ size_t len = fread(Q, 1, INPUT_BUF_SIZE, stdin); if(len != INPUT_BUF_SIZE) Q[len] = '\0'; p = 0; } return Q[p]; } void skipSpace() noexcept { while(isspace(seekChar())) p++; } uint32_t nextU32() noexcept { skipSpace(); uint32_t buf = 0; while(true){ char tmp = seekChar(); if('9' < tmp || tmp < '0') break; buf = buf * 10 + (tmp - '0'); p++; } return buf; } int32_t nextI32() noexcept { skipSpace(); if(seekChar() == '-'){ p++; return (int32_t)(-nextU32()); } return (int32_t)nextU32(); } uint64_t nextU64() noexcept { skipSpace(); uint64_t buf = 0; while(true){ char tmp = seekChar(); if('9' < tmp || tmp < '0') break; buf = buf * 10 + (tmp - '0'); p++; } return buf; } int64_t nextI64() noexcept { skipSpace(); if(seekChar() == '-'){ p++; return (int64_t)(-nextU64()); } return (int64_t)nextU64(); } char nextChar() noexcept { skipSpace(); char buf = seekChar(); p++; return buf; } std::string nextToken(){ skipSpace(); std::string buf; while(true){ char ch = seekChar(); if(isspace(ch) || ch == '\0') break; buf.push_back(ch); p++; } return buf; } MyType& operator>>(unsigned int& dest) noexcept { dest = nextU32(); return *this; } MyType& operator>>(int& dest) noexcept { dest = nextI32(); return *this; } MyType& operator>>(unsigned long& dest) noexcept { dest = nextU64(); return *this; } MyType& operator>>(long& dest) noexcept { dest = nextI64(); return *this; } MyType& operator>>(unsigned long long& dest) noexcept { dest = nextU64(); return *this; } MyType& operator>>(long long& dest) noexcept { dest = nextI64(); return *this; } MyType& operator>>(std::string& dest){ dest = nextToken(); return *this; } MyType& operator>>(char& dest) noexcept { dest = nextChar(); return *this; } } cin; struct FastOutputTable{ char LZ[1000][4] = {}; char NLZ[1000][4] = {}; constexpr FastOutputTable(){ using u32 = uint_fast32_t; for(u32 d=0; d<1000; d++){ LZ[d][0] = ('0' + d / 100 % 10); LZ[d][1] = ('0' + d / 10 % 10); LZ[d][2] = ('0' + d / 1 % 10); LZ[d][3] = '\0'; } for(u32 d=0; d<1000; d++){ u32 i = 0; if(d >= 100) NLZ[d][i++] = ('0' + d / 100 % 10); if(d >= 10) NLZ[d][i++] = ('0' + d / 10 % 10); if(d >= 1) NLZ[d][i++] = ('0' + d / 1 % 10); NLZ[d][i++] = '\0'; } } }; struct COutStream{ private: using u32 = uint32_t; using u64 = uint64_t; using MyType = COutStream; static const u32 OUTPUT_BUF_SIZE = 1 << 17; static char Q[OUTPUT_BUF_SIZE]; static constexpr FastOutputTable TB = FastOutputTable(); u32 p = 0; static constexpr u32 P10(u32 d){ return d ? P10(d-1)*10 : 1; } static constexpr u64 P10L(u32 d){ return d ? P10L(d-1)*10 : 1; } template<class T, class U> static void Fil(T& m, U& l, U x) noexcept { m = l/x; l -= m*x; } void next_dig9(u32 x){ u32 y; Fil(y, x, P10(6)); nextCstr(TB.LZ[y]); Fil(y, x, P10(3)); nextCstr(TB.LZ[y]); nextCstr(TB.LZ[x]); } public: void nextChar(char c){ Q[p++] = c; if(p == OUTPUT_BUF_SIZE){ fwrite(Q, p, 1, stdout); p = 0; } } void nextEoln(){ nextChar('\n'); } void nextCstr(const char* s){ while(*s) nextChar(*(s++)); } void nextU32(uint32_t x){ u32 y = 0; if(x >= P10(9)){ Fil(y, x, P10(9)); nextCstr(TB.NLZ[y]); next_dig9(x); } else if(x >= P10(6)){ Fil(y, x, P10(6)); nextCstr(TB.NLZ[y]); Fil(y, x, P10(3)); nextCstr(TB.LZ[y]); nextCstr(TB.LZ[x]); } else if(x >= P10(3)){ Fil(y, x, P10(3)); nextCstr(TB.NLZ[y]); nextCstr(TB.LZ[x]); } else if(x >= 1) nextCstr(TB.NLZ[x]); else nextChar('0'); } void nextI32(int32_t x){ if(x >= 0) nextU32(x); else{ nextChar('-'); nextU32((u32)-x); } } void nextU64(uint64_t x){ u32 y = 0; if(x >= P10L(18)){ Fil(y, x, P10L(18)); nextU32(y); Fil(y, x, P10L(9)); next_dig9(y); next_dig9(x); } else if(x >= P10L(9)){ Fil(y, x, P10L(9)); nextU32(y); next_dig9(x); } else nextU32(x); } void nextI64(int64_t x){ if(x >= 0) nextU64(x); else{ nextChar('-'); nextU64((u64)-x); } } void writeToFile(bool flush = false){ fwrite(Q, p, 1, stdout); if(flush) fflush(stdout); p = 0; } COutStream(){ Q[0] = 0; } ~COutStream(){ writeToFile(); } MyType& operator<<(unsigned int tg){ nextU32(tg); return *this; } MyType& operator<<(unsigned long tg){ nextU64(tg); return *this; } MyType& operator<<(unsigned long long tg){ nextU64(tg); return *this; } MyType& operator<<(int tg){ nextI32(tg); return *this; } MyType& operator<<(long tg){ nextI64(tg); return *this; } MyType& operator<<(long long tg){ nextI64(tg); return *this; } MyType& operator<<(const std::string& tg){ nextCstr(tg.c_str()); return *this; } MyType& operator<<(const char* tg){ nextCstr(tg); return *this; } MyType& operator<<(char tg){ nextChar(tg); return *this; } } cout; char CInStream::Q[INPUT_BUF_SIZE]; char COutStream::Q[OUTPUT_BUF_SIZE]; } // namespace nachia #line 4 "Main.cpp" int main(){ using nachia::cin; using nachia::cout; int N; cin >> N; int M; cin >> M; int Q; cin >> Q; nachia::Graph graph(N, true); for(int i=0; i<M; i++){ int u; cin >> u; u--; int v; cin >> v; v--; graph.addEdge(u, v); } auto tecc = nachia::TwoEdgeConnectedComponents(graph).getEdgeMapping(); nachia::Graph graph2(N, true); for(int i=0; i<M; i++) if(tecc[i] == -1) graph2.addEdge(graph[i].from, graph[i].to); auto con = nachia::ConnectedComponents(graph2).getMapping(); for(int i=0; i<Q; i++){ int u; cin >> u; u--; int v; cin >> v; v--; bool ans = con[u] == con[v]; cout << (ans ? "Yes\n" : "No\n"); } return 0; }