結果

問題 No.2171 OR Assignment
ユーザー akakimidoriakakimidori
提出日時 2022-12-23 00:23:46
言語 Rust
(1.77.0)
結果
AC  
実行時間 2,017 ms / 3,500 ms
コード長 11,969 bytes
コンパイル時間 2,898 ms
コンパイル使用メモリ 155,732 KB
実行使用メモリ 8,664 KB
最終ジャッジ日時 2023-08-11 13:24:40
合計ジャッジ時間 22,074 ms
ジャッジサーバーID
(参考情報)
judge12 / judge13
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
4,384 KB
testcase_01 AC 1 ms
4,376 KB
testcase_02 AC 1 ms
4,380 KB
testcase_03 AC 1 ms
4,380 KB
testcase_04 AC 1 ms
4,380 KB
testcase_05 AC 1 ms
4,384 KB
testcase_06 AC 1 ms
4,380 KB
testcase_07 AC 1 ms
4,380 KB
testcase_08 AC 1 ms
4,380 KB
testcase_09 AC 1 ms
4,380 KB
testcase_10 AC 1 ms
4,384 KB
testcase_11 AC 1 ms
4,376 KB
testcase_12 AC 139 ms
8,652 KB
testcase_13 AC 139 ms
8,572 KB
testcase_14 AC 138 ms
8,656 KB
testcase_15 AC 34 ms
7,088 KB
testcase_16 AC 47 ms
7,088 KB
testcase_17 AC 45 ms
8,664 KB
testcase_18 AC 1,277 ms
8,644 KB
testcase_19 AC 1,269 ms
7,124 KB
testcase_20 AC 2,017 ms
7,120 KB
testcase_21 AC 1,968 ms
7,064 KB
testcase_22 AC 1,561 ms
7,012 KB
testcase_23 AC 821 ms
8,648 KB
testcase_24 AC 1,138 ms
8,656 KB
testcase_25 AC 1,361 ms
7,532 KB
testcase_26 AC 1,562 ms
7,616 KB
testcase_27 AC 1,437 ms
7,624 KB
testcase_28 AC 1,382 ms
7,620 KB
testcase_29 AC 1,276 ms
8,624 KB
testcase_30 AC 776 ms
8,628 KB
testcase_31 AC 961 ms
8,652 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

fn run() {
    input! {
        n: usize,
        a: [u32; n],
    }
    let mut a = a;
    a.reverse();
    let mut or = SegmentTreePURQ::new(n, 0, |a, b| *a | *b);
    let mut sum = SegmentTreePURQ::new(n + 1, M::zero(), |a, b| *a + *b);
    for (i, a) in a.iter().enumerate() {
        or.update_tmp(i, *a);
    }
    or.update_all();
    sum.update(0, M::one());
    for i in 0..n {
        let mut x = 0;
        let mut update = vec![];
        if a[i] == 0 {
            update.push((i + 1, sum.find(i, i + 1)));
        }
        loop {
            let pos = or.max_right(i, |v| *v <= x);
            if pos == n {
                break;
            }
            let y = or.find(i, pos + 1);
            let v = sum.find(i, pos + 1);
            update.push((pos + 1, v));
            x = y;
        }
        for (pos, v) in update.into_iter().rev() {
            let p = sum.find(pos, pos + 1);
            sum.update(pos, p + v);
        }
    }
    println!("{}", sum.find(n, n + 1));
}

fn main() {
    run();
}

// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

#[macro_export]
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

#[macro_export]
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------
// ---------- begin modint ----------
use std::marker::*;
use std::ops::*;

pub trait Modulo {
    fn modulo() -> u32;
}

pub struct ConstantModulo<const M: u32>;

impl<const M: u32> Modulo for ConstantModulo<{ M }> {
    fn modulo() -> u32 {
        M
    }
}

pub struct ModInt<T>(u32, PhantomData<T>);

impl<T> Clone for ModInt<T> {
    fn clone(&self) -> Self {
        Self::new_unchecked(self.0)
    }
}

impl<T> Copy for ModInt<T> {}

impl<T: Modulo> Add for ModInt<T> {
    type Output = ModInt<T>;
    fn add(self, rhs: Self) -> Self::Output {
        let mut v = self.0 + rhs.0;
        if v >= T::modulo() {
            v -= T::modulo();
        }
        Self::new_unchecked(v)
    }
}

impl<T: Modulo> AddAssign for ModInt<T> {
    fn add_assign(&mut self, rhs: Self) {
        *self = *self + rhs;
    }
}

impl<T: Modulo> Sub for ModInt<T> {
    type Output = ModInt<T>;
    fn sub(self, rhs: Self) -> Self::Output {
        let mut v = self.0 - rhs.0;
        if self.0 < rhs.0 {
            v += T::modulo();
        }
        Self::new_unchecked(v)
    }
}

impl<T: Modulo> SubAssign for ModInt<T> {
    fn sub_assign(&mut self, rhs: Self) {
        *self = *self - rhs;
    }
}

impl<T: Modulo> Mul for ModInt<T> {
    type Output = ModInt<T>;
    fn mul(self, rhs: Self) -> Self::Output {
        let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64;
        Self::new_unchecked(v as u32)
    }
}

impl<T: Modulo> MulAssign for ModInt<T> {
    fn mul_assign(&mut self, rhs: Self) {
        *self = *self * rhs;
    }
}

impl<T: Modulo> Neg for ModInt<T> {
    type Output = ModInt<T>;
    fn neg(self) -> Self::Output {
        if self.is_zero() {
            Self::zero()
        } else {
            Self::new_unchecked(T::modulo() - self.0)
        }
    }
}

impl<T> std::fmt::Display for ModInt<T> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl<T> std::fmt::Debug for ModInt<T> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl<T> Default for ModInt<T> {
    fn default() -> Self {
        Self::zero()
    }
}

impl<T: Modulo> std::str::FromStr for ModInt<T> {
    type Err = std::num::ParseIntError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let val = s.parse::<u32>()?;
        Ok(ModInt::new(val))
    }
}

impl<T: Modulo> From<usize> for ModInt<T> {
    fn from(val: usize) -> ModInt<T> {
        ModInt::new_unchecked((val % T::modulo() as usize) as u32)
    }
}

impl<T: Modulo> From<u64> for ModInt<T> {
    fn from(val: u64) -> ModInt<T> {
        ModInt::new_unchecked((val % T::modulo() as u64) as u32)
    }
}

impl<T: Modulo> From<i64> for ModInt<T> {
    fn from(val: i64) -> ModInt<T> {
        let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32;
        if v >= T::modulo() {
            v -= T::modulo();
        }
        ModInt::new_unchecked(v)
    }
}

impl<T> ModInt<T> {
    pub fn new_unchecked(n: u32) -> Self {
        ModInt(n, PhantomData)
    }
    pub fn zero() -> Self {
        ModInt::new_unchecked(0)
    }
    pub fn one() -> Self {
        ModInt::new_unchecked(1)
    }
    pub fn is_zero(&self) -> bool {
        self.0 == 0
    }
}

impl<T: Modulo> ModInt<T> {
    pub fn new(d: u32) -> Self {
        ModInt::new_unchecked(d % T::modulo())
    }
    pub fn pow(&self, mut n: u64) -> Self {
        let mut t = Self::one();
        let mut s = *self;
        while n > 0 {
            if n & 1 == 1 {
                t *= s;
            }
            s *= s;
            n >>= 1;
        }
        t
    }
    pub fn inv(&self) -> Self {
        assert!(!self.is_zero());
        self.pow(T::modulo() as u64 - 2)
    }
    pub fn fact(n: usize) -> Self {
        (1..=n).fold(Self::one(), |s, a| s * Self::from(a))
    }
    pub fn perm(n: usize, k: usize) -> Self {
        if k > n {
            return Self::zero();
        }
        ((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a))
    }
    pub fn binom(n: usize, k: usize) -> Self {
        if k > n {
            return Self::zero();
        }
        let k = k.min(n - k);
        let mut nu = Self::one();
        let mut de = Self::one();
        for i in 0..k {
            nu *= Self::from(n - i);
            de *= Self::from(i + 1);
        }
        nu * de.inv()
    }
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<T> {
    fact: Vec<ModInt<T>>,
    ifact: Vec<ModInt<T>>,
    inv: Vec<ModInt<T>>,
}

impl<T: Modulo> Precalc<T> {
    pub fn new(n: usize) -> Precalc<T> {
        let mut inv = vec![ModInt::one(); n + 1];
        let mut fact = vec![ModInt::one(); n + 1];
        let mut ifact = vec![ModInt::one(); n + 1];
        for i in 2..=n {
            fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
        }
        ifact[n] = fact[n].inv();
        if n > 0 {
            inv[n] = ifact[n] * fact[n - 1];
        }
        for i in (1..n).rev() {
            ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
            inv[i] = ifact[i] * fact[i - 1];
        }
        Precalc { fact, ifact, inv }
    }
    pub fn inv(&self, n: usize) -> ModInt<T> {
        assert!(n > 0);
        self.inv[n]
    }
    pub fn fact(&self, n: usize) -> ModInt<T> {
        self.fact[n]
    }
    pub fn ifact(&self, n: usize) -> ModInt<T> {
        self.ifact[n]
    }
    pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
        if k > n {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[n - k]
    }
    pub fn binom(&self, n: usize, k: usize) -> ModInt<T> {
        if k > n {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[k] * self.ifact[n - k]
    }
}
// ---------- end precalc ----------

type M = ModInt<ConstantModulo<998_244_353>>;

// ---------- begin segment tree Point Update Range Query ----------
pub struct SegmentTreePURQ<T, F> {
    n: usize,
    size: usize,
    data: Vec<T>,
    e: T,
    op: F,
}

impl<T, F> SegmentTreePURQ<T, F>
where
    T: Clone,
    F: Fn(&T, &T) -> T,
{
    pub fn new(n: usize, e: T, op: F) -> Self {
        assert!(n > 0);
        let size = n.next_power_of_two();
        let data = vec![e.clone(); 2 * size];
        SegmentTreePURQ {
            n,
            size,
            data,
            e,
            op,
        }
    }
    pub fn update_tmp(&mut self, x: usize, v: T) {
        assert!(x < self.n);
        self.data[x + self.size] = v;
    }
    pub fn update_all(&mut self) {
        for i in (1..self.size).rev() {
            self.data[i] = (self.op)(&self.data[2 * i], &self.data[2 * i + 1]);
        }
    }
    pub fn update(&mut self, x: usize, v: T) {
        assert!(x < self.n);
        let mut x = x + self.size;
        self.data[x] = v;
        x >>= 1;
        while x > 0 {
            self.data[x] = (self.op)(&self.data[2 * x], &self.data[2 * x + 1]);
            x >>= 1;
        }
    }
    pub fn find(&self, l: usize, r: usize) -> T {
        assert!(l <= r && r <= self.n);
        if l == r {
            return self.e.clone();
        }
        let mut l = self.size + l;
        let mut r = self.size + r;
        let mut x = self.e.clone();
        let mut y = self.e.clone();
        while l < r {
            if l & 1 == 1 {
                x = (self.op)(&x, &self.data[l]);
                l += 1;
            }
            if r & 1 == 1 {
                r -= 1;
                y = (self.op)(&self.data[r], &y);
            }
            l >>= 1;
            r >>= 1;
        }
        (self.op)(&x, &y)
    }
    pub fn max_right<P>(&self, l: usize, f: P) -> usize
    where
        P: Fn(&T) -> bool,
    {
        assert!(l <= self.n);
        assert!(f(&self.e));
        if l == self.n {
            return self.n;
        }
        let mut l = l + self.size;
        let mut sum = self.e.clone();
        while {
            l >>= l.trailing_zeros();
            let v = (self.op)(&sum, &self.data[l]);
            if !f(&v) {
                while l < self.size {
                    l <<= 1;
                    let v = (self.op)(&sum, &self.data[l]);
                    if f(&v) {
                        sum = v;
                        l += 1;
                    }
                }
                return l - self.size;
            }
            sum = v;
            l += 1;
            l.count_ones() > 1
        } {}
        self.n
    }
    pub fn min_left<P>(&self, r: usize, f: P) -> usize
    where
        P: Fn(&T) -> bool,
    {
        assert!(r <= self.n);
        assert!(f(&self.e));
        if r == 0 {
            return 0;
        }
        let mut r = r + self.size;
        let mut sum = self.e.clone();
        while {
            r -= 1;
            while r > 1 && r & 1 == 1 {
                r >>= 1;
            }
            let v = (self.op)(&self.data[r], &sum);
            if !f(&v) {
                while r < self.size {
                    r = 2 * r + 1;
                    let v = (self.op)(&self.data[r], &sum);
                    if f(&v) {
                        sum = v;
                        r -= 1;
                    }
                }
                return r + 1 - self.size;
            }
            sum = v;
            (r & (!r + 1)) != r
        } {}
        0
    }
}
// ---------- end segment tree Point Update Range Query ----------
0