結果

問題 No.2173 Nightcord
ユーザー PCTprobabilityPCTprobability
提出日時 2022-12-25 00:56:48
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 18,706 bytes
コンパイル時間 6,895 ms
コンパイル使用メモリ 320,736 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-04-29 06:52:13
合計ジャッジ時間 46,328 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 3 ms
5,376 KB
testcase_02 RE -
testcase_03 AC 1,324 ms
5,376 KB
testcase_04 RE -
testcase_05 RE -
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 3 ms
5,376 KB
testcase_08 AC 4 ms
5,376 KB
testcase_09 AC 932 ms
5,376 KB
testcase_10 RE -
testcase_11 AC 41 ms
5,376 KB
testcase_12 RE -
testcase_13 AC 74 ms
5,376 KB
testcase_14 AC 1,328 ms
5,376 KB
testcase_15 RE -
testcase_16 RE -
testcase_17 AC 164 ms
5,376 KB
testcase_18 RE -
testcase_19 AC 8 ms
5,376 KB
testcase_20 RE -
testcase_21 AC 788 ms
5,376 KB
testcase_22 AC 878 ms
5,376 KB
testcase_23 RE -
testcase_24 AC 1,673 ms
5,376 KB
testcase_25 RE -
testcase_26 AC 1,396 ms
5,376 KB
testcase_27 AC 13 ms
5,376 KB
testcase_28 RE -
testcase_29 AC 200 ms
5,376 KB
testcase_30 RE -
testcase_31 AC 318 ms
5,376 KB
testcase_32 AC 917 ms
5,376 KB
testcase_33 AC 1,299 ms
5,376 KB
testcase_34 AC 1,426 ms
5,376 KB
testcase_35 AC 686 ms
5,376 KB
testcase_36 AC 822 ms
5,376 KB
testcase_37 AC 1,228 ms
5,376 KB
testcase_38 AC 1,371 ms
5,376 KB
testcase_39 AC 1,286 ms
5,376 KB
testcase_40 AC 1,399 ms
5,376 KB
testcase_41 AC 853 ms
5,376 KB
testcase_42 AC 1,696 ms
5,376 KB
testcase_43 AC 94 ms
5,376 KB
testcase_44 AC 6 ms
5,376 KB
testcase_45 AC 293 ms
5,376 KB
testcase_46 AC 1,682 ms
5,376 KB
testcase_47 AC 411 ms
5,376 KB
testcase_48 AC 471 ms
5,376 KB
testcase_49 AC 12 ms
5,376 KB
testcase_50 AC 170 ms
5,376 KB
testcase_51 AC 450 ms
5,376 KB
testcase_52 AC 7 ms
5,376 KB
testcase_53 AC 483 ms
5,376 KB
testcase_54 AC 697 ms
5,376 KB
testcase_55 AC 149 ms
5,376 KB
testcase_56 AC 301 ms
5,376 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function 'std::ostream& operator<<(std::ostream&, Point&)':
main.cpp:118:1: warning: no return statement in function returning non-void [-Wreturn-type]
  118 | }
      | ^

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#endif
using ll = long long;
using ld = long double;
using ull = unsigned long long;
#define endl "\n"
typedef pair<int, int> Pii;
#define REP(i, n) for (int i = 0; i < (n); ++i)
#define REP3(i, m, n) for (int i = (m); (i) < int(n); ++ (i))
#define FOR(i,a,b) for(ll i=a;i<=(ll)(b);i++)
#define rep(i,a,b) for(int i=(int)(a);i<(int)(b);i++)
#define ALL(x) begin(x), end(x)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#define all(s) (s).begin(),(s).end()
#define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i)
#define drep(i, n) drep2(i, n, 0)
#define rever(vec) reverse(vec.begin(), vec.end())
#define sor(vec) sort(vec.begin(), vec.end())
#define fi first
#define se second
#define pb push_back
#define P pair<ll,ll>
#define PQminll priority_queue<ll, vector<ll>, greater<ll>>
#define PQmaxll priority_queue<ll,vector<ll>,less<ll>>
#define PQminP priority_queue<P, vector<P>, greater<P>>
#define PQmaxP priority_queue<P,vector<P>,less<P>>
#define NP next_permutation
//const ll mod = 1000000009;
const ll mod = 998244353;
//const ll mod = 1000000007;
const ll inf = 4100000000000000000ll;
const ld eps = ld(0.00000000001);
static const long double pi = 3.141592653589793;
template<class T>void vcin(vector<T> &n){for(int i=0;i<int(n.size());i++) cin>>n[i];}
template<class T,class K>void vcin(vector<T> &n,vector<K> &m){for(int i=0;i<int(n.size());i++) cin>>n[i]>>m[i];}
template<class T>void vcout(vector<T> &n){for(int i=0;i<int(n.size());i++){cout<<n[i]<<" ";}cout<<endl;}
template<class T>void vcin(vector<vector<T>> &n){for(int i=0;i<int(n.size());i++){for(int j=0;j<int(n[i].size());j++){cin>>n[i][j];}}}
template<class T>void vcout(vector<vector<T>> &n){for(int i=0;i<int(n.size());i++){for(int j=0;j<int(n[i].size());j++){cout<<n[i][j]<<" ";}cout<<endl;}cout<<endl;}
void yes(bool a){cout<<(a?"yes":"no")<<endl;}
void YES(bool a){cout<<(a?"YES":"NO")<<endl;}
void Yes(bool a){cout<<(a?"Yes":"No")<<endl;}
void possible(bool a){ cout<<(a?"possible":"impossible")<<endl; }
void Possible(bool a){ cout<<(a?"Possible":"Impossible")<<endl; }
void POSSIBLE(bool a){ cout<<(a?"POSSIBLE":"IMPOSSIBLE")<<endl; }
template<class T>auto min(const T& a){ return *min_element(all(a)); }
template<class T>auto max(const T& a){ return *max_element(all(a)); }
template<class T,class F>void print(pair<T,F> a){cout<<a.fi<<" "<<a.se<<endl;}
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0;}
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0;}
template<class T> void ifmin(T t,T u){if(t>u){cout<<-1<<endl;}else{cout<<t<<endl;}}
template<class T> void ifmax(T t,T u){if(t>u){cout<<-1<<endl;}else{cout<<t<<endl;}}
ll fastgcd(ll u,ll v){ll shl=0;while(u&&v&&u!=v){bool eu=!(u&1);bool ev=!(v&1);if(eu&&ev){++shl;u>>=1;v>>=1;}else if(eu&&!ev){u>>=1;}else if(!eu&&ev){v>>=1;}else if(u>=v){u=(u-v)>>1;}else{ll tmp=u;u=(v-u)>>1;v=tmp;}}return !u?v<<shl:u<<shl;}
ll modPow(ll a, ll n, ll mod) { if(mod==1) return 0;ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; }
vector<ll> divisor(ll x){ vector<ll> ans; for(ll i = 1; i * i <= x; i++){ if(x % i == 0) {ans.push_back(i); if(i*i!=x){ ans.push_back(x / ans[i]);}}}sor(ans); return ans; }
ll pop(ll x){return __builtin_popcountll(x);}
ll poplong(ll x){ll y=-1;while(x){x/=2;y++;}return y;}
P hyou(P a){ll x=fastgcd(abs(a.fi),abs(a.se));a.fi/=x;a.se/=x;if(a.se<0){a.fi*=-1;a.se*=-1;}return a;}
P Pplus(P a,P b){ return hyou({a.fi*b.se+b.fi*a.se,a.se*b.se});}
P Ptimes(P a,ll b){ return hyou({a.fi*b,a.se});}
P Ptimes(P a,P b){ return hyou({a.fi*b.fi,a.se*b.se});}
P Pminus(P a,P b){ return hyou({a.fi*b.se-b.fi*a.se,a.se*b.se});}
P Pgyaku(P a){ return hyou({a.se,a.fi});}
template<class T>
struct Sum{
  vector<T> data;
  Sum(const vector<T>& v):data(v.size()+1){
    for(ll i=0;i<v.size();i++) data[i+1]=data[i]+v[i];
  }
  T get(ll l,ll r) const {
    return data[r]-data[l];
  }
};
template<class T>
struct Sum2{
  vector<vector<T>> data;
  Sum2(const vector<vector<T>> &v):data(v.size()+1,vector<T>(v[0].size()+1)){
    for(int i=0;i<v.size();i++) for(int j=0;j<v[i].size();j++) data[i+1][j+1]=data[i][j+1]+v[i][j];
    for(int i=0;i<v.size();i++) for(int j=0;j<v[i].size();j++) data[i+1][j+1]+=data[i+1][j];
  }
  T get(ll x1,ll y1,ll x2,ll y2) const {
    return data[x2][y2]+data[x1][y1]-data[x1][y2]-data[x2][y1];
  }
};
 
void cincout(){
  ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
  cout<< fixed << setprecision(15);
}

using Real = double;
using Point = complex< Real >;
const Real EPS = 1e-8, PI = acos(-1);
 
inline bool eq(Real a, Real b) { return fabs(b - a) < EPS; }
 
Point operator*(const Point &p, const Real &d) {
  return Point(real(p) * d, imag(p) * d);
}
 
istream &operator>>(istream &is, Point &p) {
  Real a, b;
  is >> a >> b;
  p = Point(a, b);
  return is;
}
 
ostream &operator<<(ostream &os, Point &p) {
  os << fixed << setprecision(10) << p.real() << " " << p.imag();
}
 
Point rotate(Real theta, const Point &p) {
  return Point(cos(theta) * p.real() - sin(theta) * p.imag(), sin(theta) * p.real() + cos(theta) * p.imag());
}
 
Real radian_to_degree(Real r) {
  return (r * 180.0 / PI);
}
 
Real degree_to_radian(Real d) {
  return (d * PI / 180.0);
}
 
Real get_angle(const Point &a, const Point &b, const Point &c) {
  const Point v(b - a), w(c - b);
  Real alpha = atan2(v.imag(), v.real()), beta = atan2(w.imag(), w.real());
  if(alpha > beta) swap(alpha, beta);
  Real theta = (beta - alpha);
  return min(theta, 2 * acos(-1) - theta);
}
 
namespace std {
  bool operator<(const Point &a, const Point &b) {
    return a.real() != b.real() ? a.real() < b.real() : a.imag() < b.imag();
  }
}
 
 
struct Line {
  Point a, b;
 
  Line() = default;
 
  Line(Point a, Point b) : a(a), b(b) {}
 
  Line(Real A, Real B, Real C) // Ax + By = C
  {
    if(eq(A, 0)) a = Point(0, C / B), b = Point(1, C / B);
    else if(eq(B, 0)) b = Point(C / A, 0), b = Point(C / A, 1);
    else a = Point(0, C / B), b = Point(C / A, 0);
  }
 
  friend ostream &operator<<(ostream &os, Line &p) {
    return os << p.a << " to " << p.b;
  }
 
  friend istream &operator>>(istream &is, Line &a) {
    return is >> a.a >> a.b;
  }
};
 
struct Segment : Line {
  Segment() = default;
 
  Segment(Point a, Point b) : Line(a, b) {}
};
 
struct Circle {
  Point p;
  Real r;
 
  Circle() = default;
 
  Circle(Point p, Real r) : p(p), r(r) {}
};
 
using Points = vector< Point >;
using Polygon = vector< Point >;
using Segments = vector< Segment >;
using Lines = vector< Line >;
using Circles = vector< Circle >;
 
Real cross(const Point &a, const Point &b) {
  return real(a) * imag(b) - imag(a) * real(b);
}
 
Real dot(const Point &a, const Point &b) {
  return real(a) * real(b) + imag(a) * imag(b);
}
 
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_C
int ccw(const Point &a, Point b, Point c) {
  b = b - a, c = c - a;
  if(cross(b, c) > EPS) return +1;  // "COUNTER_CLOCKWISE"
  if(cross(b, c) < -EPS) return -1; // "CLOCKWISE"
  if(dot(b, c) < 0) return +2;      // "ONLINE_BACK"
  if(norm(b) < norm(c)) return -2;  // "ONLINE_FRONT"
  return 0;                         // "ON_SEGMENT"
}
 
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A
bool parallel(const Line &a, const Line &b) {
  return eq(cross(a.b - a.a, b.b - b.a), 0.0);
}
 
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A
bool orthogonal(const Line &a, const Line &b) {
  return eq(dot(a.a - a.b, b.a - b.b), 0.0);
}

 
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_A
Point projection(const Line &l, const Point &p) {
  double t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
  return l.a + (l.a - l.b) * t;
}
 
Point projection(const Segment &l, const Point &p) {
  double t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
  return l.a + (l.a - l.b) * t;
}
 
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_B
Point reflection(const Line &l, const Point &p) {
  return p + (projection(l, p) - p) * 2.0;
}
 
bool intersect(const Line &l, const Point &p) {
  return abs(ccw(l.a, l.b, p)) != 1;
}
 
bool intersect(const Line &l, const Line &m) {
  return abs(cross(l.b - l.a, m.b - m.a)) > EPS || abs(cross(l.b - l.a, m.b - l.a)) < EPS;
}
 
bool intersect(const Segment &s, const Point &p) {
  return ccw(s.a, s.b, p) == 0;
}
 
bool intersect(const Line &l, const Segment &s) {
  return cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < EPS;
}
 
Real distance(const Line &l, const Point &p);
 
bool intersect(const Circle &c, const Line &l) {
  return distance(l, c.p) <= c.r + EPS;
}
 
bool intersect(const Circle &c, const Point &p) {
  return abs(abs(p - c.p) - c.r) < EPS;
}
 
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_B
bool intersect(const Segment &s, const Segment &t) {
  return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 && ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;
}
 
int intersect(const Circle &c, const Segment &l) {
  if(norm(projection(l, c.p) - c.p) - c.r * c.r > EPS) return 0;
  auto d1 = abs(c.p - l.a), d2 = abs(c.p - l.b);
  if(d1 < c.r + EPS && d2 < c.r + EPS) return 0;
  if(d1 < c.r - EPS && d2 > c.r + EPS || d1 > c.r + EPS && d2 < c.r - EPS) return 1;
  const Point h = projection(l, c.p);
  if(dot(l.a - h, l.b - h) < 0) return 2;
  return 0;
}
 
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_A&lang=jp
int intersect(Circle c1, Circle c2) {
  if(c1.r < c2.r) swap(c1, c2);
  Real d = abs(c1.p - c2.p);
  if(c1.r + c2.r < d) return 4;
  if(eq(c1.r + c2.r, d)) return 3;
  if(c1.r - c2.r < d) return 2;
  if(eq(c1.r - c2.r, d)) return 1;
  return 0;
}
 
Real distance(const Point &a, const Point &b) {
  return abs(a - b);
}
 
Real distance(const Line &l, const Point &p) {
  return abs(p - projection(l, p));
}
 
Real distance(const Line &l, const Line &m) {
  return intersect(l, m) ? 0 : distance(l, m.a);
}
 
Real distance(const Segment &s, const Point &p) {
  Point r = projection(s, p);
  if(intersect(s, r)) return abs(r - p);
  return min(abs(s.a - p), abs(s.b - p));
}
 
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_D
Real distance(const Segment &a, const Segment &b) {
  if(intersect(a, b)) return 0;
  return min({distance(a, b.a), distance(a, b.b), distance(b, a.a), distance(b, a.b)});
}
 
Real distance(const Line &l, const Segment &s) {
  if(intersect(l, s)) return 0;
  return min(distance(l, s.a), distance(l, s.b));
}
 
Point crosspoint(const Line &l, const Line &m) {
  Real A = cross(l.b - l.a, m.b - m.a);
  Real B = cross(l.b - l.a, l.b - m.a);
  if(eq(abs(A), 0.0) && eq(abs(B), 0.0)) return m.a;
  return m.a + (m.b - m.a) * B / A;
}
 
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_C
Point crosspoint(const Segment &l, const Segment &m) {
  return crosspoint(Line(l), Line(m));
}
 
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_D
pair< Point, Point > crosspoint(const Circle &c, const Line l) {
  Point pr = projection(l, c.p);
  Point e = (l.b - l.a) / abs(l.b - l.a);
  if(eq(distance(l, c.p), c.r)) return {pr, pr};
  double base = sqrt(c.r * c.r - norm(pr - c.p));
  return {pr - e * base, pr + e * base};
}
 
pair< Point, Point > crosspoint(const Circle &c, const Segment &l) {
  Line aa = Line(l.a, l.b);
  if(intersect(c, l) == 2) return crosspoint(c, aa);
  auto ret = crosspoint(c, aa);
  if(dot(l.a - ret.first, l.b - ret.first) < 0) ret.second = ret.first;
  else ret.first = ret.second;
  return ret;
}
 
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_E
pair< Point, Point > crosspoint(const Circle &c1, const Circle &c2) {
  Real d = abs(c1.p - c2.p);
  Real a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d));
  Real t = atan2(c2.p.imag() - c1.p.imag(), c2.p.real() - c1.p.real());
  Point p1 = c1.p + Point(cos(t + a) * c1.r, sin(t + a) * c1.r);
  Point p2 = c1.p + Point(cos(t - a) * c1.r, sin(t - a) * c1.r);
  return {p1, p2};
}
 
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_F
pair< Point, Point > tangent(const Circle &c1, const Point &p2) {
  return crosspoint(c1, Circle(p2, sqrt(norm(c1.p - p2) - c1.r * c1.r)));
}


// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_G
Lines tangent(Circle c1, Circle c2) {
  Lines ret;
  if(c1.r < c2.r) swap(c1, c2);
  Real g = norm(c1.p - c2.p);
  if(eq(g, 0)) return ret;
  Point u = (c2.p - c1.p) / sqrt(g);
  Point v = rotate(PI * 0.5, u);
  for(int s : {-1, 1}) {
    Real h = (c1.r + s * c2.r) / sqrt(g);
    if(eq(1 - h * h, 0)) {
      ret.emplace_back(c1.p + u * c1.r, c1.p + (u + v) * c1.r);
    } else if(1 - h * h > 0) {
      Point uu = u * h, vv = v * sqrt(1 - h * h);
      ret.emplace_back(c1.p + (uu + vv) * c1.r, c2.p - (uu + vv) * c2.r * s);
      ret.emplace_back(c1.p + (uu - vv) * c1.r, c2.p - (uu - vv) * c2.r * s);
    }
  }
  return ret;
}
 
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_B
bool is_convex(const Polygon &p) {
  int n = (int) p.size();
  for(int i = 0; i < n; i++) {
    if(ccw(p[(i + n - 1) % n], p[i], p[(i + 1) % n]) == -1) return false;
  }
  return true;
}
 
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_A
Polygon convex_hull(Polygon &p) {
  int n = (int) p.size(), k = 0;
  if(n <= 2) return p;
  sort(p.begin(), p.end());
  vector< Point > ch(2 * n);
  for(int i = 0; i < n; ch[k++] = p[i++]) {
    while(k >= 2 && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < 0) --k;
  }
  for(int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--]) {
    while(k >= t && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < 0) --k;
  }
  ch.resize(k - 1);
  return ch;
}
 
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_C
enum {
  OUT, ON, IN
};
int contains(const Polygon &Q, const Point &p) {
  bool in = false;
  for(int i = 0; i < Q.size(); i++) {
    Point a = Q[i] - p, b = Q[(i + 1) % Q.size()] - p;
    if(a.imag() > b.imag()) swap(a, b);
    if(a.imag() <= 0 && 0 < b.imag() && cross(a, b) < 0) in = !in;
    if(cross(a, b) == 0 && dot(a, b) <= 0) return ON;
  }
  return in ? IN : OUT;
}
 
 
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1033
void merge_segments(vector< Segment > &segs) {
 
  auto merge_if_able = [](Segment &s1, const Segment &s2) {
    if(abs(cross(s1.b - s1.a, s2.b - s2.a)) > EPS) return false;
    if(ccw(s1.a, s2.a, s1.b) == 1 || ccw(s1.a, s2.a, s1.b) == -1) return false;
    if(ccw(s1.a, s1.b, s2.a) == -2 || ccw(s2.a, s2.b, s1.a) == -2) return false;
    s1 = Segment(min(s1.a, s2.a), max(s1.b, s2.b));
    return true;
  };
 
  for(int i = 0; i < segs.size(); i++) {
    if(segs[i].b < segs[i].a) swap(segs[i].a, segs[i].b);
  }
  for(int i = 0; i < segs.size(); i++) {
    for(int j = i + 1; j < segs.size(); j++) {
      if(merge_if_able(segs[i], segs[j])) {
        segs[j--] = segs.back(), segs.pop_back();
      }
    }
  }
}
 
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1033
vector< vector< int > > segment_arrangement(vector< Segment > &segs, vector< Point > &ps) {
  vector< vector< int > > g;
  int N = (int) segs.size();
  for(int i = 0; i < N; i++) {
    ps.emplace_back(segs[i].a);
    ps.emplace_back(segs[i].b);
    for(int j = i + 1; j < N; j++) {
      const Point p1 = segs[i].b - segs[i].a;
      const Point p2 = segs[j].b - segs[j].a;
      if(cross(p1, p2) == 0) continue;
      if(intersect(segs[i], segs[j])) {
        ps.emplace_back(crosspoint(segs[i], segs[j]));
      }
    }
  }
  sort(begin(ps), end(ps));
  ps.erase(unique(begin(ps), end(ps)), end(ps));
 
  int M = (int) ps.size();
  g.resize(M);
  for(int i = 0; i < N; i++) {
    vector< int > vec;
    for(int j = 0; j < M; j++) {
      if(intersect(segs[i], ps[j])) {
        vec.emplace_back(j);
      }
    }
    for(int j = 1; j < vec.size(); j++) {
      g[vec[j - 1]].push_back(vec[j]);
      g[vec[j]].push_back(vec[j - 1]);
    }
  }
  return (g);
}
 
// http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_C
Polygon convex_cut(const Polygon &U, Line l) {
  Polygon ret;
  for(int i = 0; i < U.size(); i++) {
    Point now = U[i], nxt = U[(i + 1) % U.size()];
    if(ccw(l.a, l.b, now) != -1) ret.push_back(now);
    if(ccw(l.a, l.b, now) * ccw(l.a, l.b, nxt) < 0) {
      ret.push_back(crosspoint(Line(now, nxt), l));
    }
  }
  return (ret);
}
int main() {
  cincout();
  ll n,k;
  cin>>n>>k;
  vector<pair<int,int>> a,b;
  for(int i=0;i<n;i++){
    int x,y,z;
    cin>>x>>y>>z;
    if(z==1) a.pb({x,y});
    else b.pb({x,y});
  }
  bool ok=false;
  for(int i=0;i<int(a.size());i++){
    map<pair<int,int>,vector<pair<int,int>>> m;
    for(int j=0;j<int(b.size());j++){
      int x=a[i].fi-b[j].fi,y=a[i].se-b[j].se;
      int z=gcd(x,y);
      x/=z;
      y/=z;
      if(y==0){
        x=abs(x);
      }
      if(y<0){
        y*=-1;
        x*=-1;
      }
      m[{x,y}].pb({(a[i].fi-b[j].fi),(a[i].se-b[j].se)});
    }
    for(auto e:m){
      bool p=false,q=false;
      for(auto f:e.se){
        if(f.fi+f.se==0){
          if(f.fi<0) p=true;
          else q=true;
        }
        else{
          if(f.fi+f.se<0) p=true;
          else q=true;
        }
      }
      if(p&&q) ok=true;
    }
  }
  swap(a,b);
  for(int i=0;i<int(a.size());i++){
    map<pair<int,int>,vector<pair<int,int>>> m;
    for(int j=0;j<int(b.size());j++){
      int x=a[i].fi-b[j].fi,y=a[i].se-b[j].se;
      int z=gcd(x,y);
      x/=z;
      y/=z;
      if(y==0){
        x=abs(x);
      }
      if(y<0){
        y*=-1;
        x*=-1;
      }
      m[{x,y}].pb({(a[i].fi-b[j].fi),(a[i].se-b[j].se)});
    }
    for(auto e:m){
      bool p=false,q=false;
      for(auto f:e.se){
        if(ll(f.fi)+ll(f.se)==0){
          if(f.fi<0) p=true;
          else q=true;
        }
        else{
          if(f.fi<f.se) p=true;
          else q=true;
        }
      }
      if(p&&q) ok=true;
    }
  }
  if(k==3){
    Yes(ok);
    return 0;
  }
  Polygon p(int(a.size()));
  for(int i=0;i<a.size();i++){
    Real s,t;
    s=a[i].fi;
    t=a[i].se;
    p[i]={s,t};
  }
  Polygon q(int(b.size()));
  for(int i=0;i<b.size();i++){
    Real s,t;
    s=b[i].fi;
    t=b[i].se;
    q[i]={s,t};
  }
  p=convex_hull(p);
  q=convex_hull(q);
  for(int i=0;i<q.size();i++){
    Line l={q[i],q[(i+1)%(int(q.size()))]};
    p=convex_cut(p,l);
  }
//  for(auto e:p) cout<<real(e)<<" "<<imag(e)<<endl;
  if(p.size()>0){
    assert(false);
    cout<<"Yes"<<endl;
  }
  else{
    Yes(ok);
  }
}
0