結果
| 問題 |
No.2173 Nightcord
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-12-25 02:42:33 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,443 bytes |
| コンパイル時間 | 149 ms |
| コンパイル使用メモリ | 82,420 KB |
| 実行使用メモリ | 83,712 KB |
| 最終ジャッジ日時 | 2024-11-18 09:55:57 |
| 合計ジャッジ時間 | 32,381 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 53 WA * 1 |
ソースコード
import sys,random,bisect
from collections import deque,defaultdict,Counter
from heapq import heapify,heappop,heappush
from itertools import cycle, permutations
from math import log,gcd
input = lambda :sys.stdin.readline().rstrip()
mi = lambda :map(int,input().split())
li = lambda :list(mi())
def cross3(a, b, c):
return (b[0]-a[0])*(c[1]-a[1]) - (b[1]-a[1])*(c[0]-a[0])
# ps = [(x, y), ...]: ソートされた座標list
def convex_hull(ps):
qs = []
N = len(ps)
for p in ps:
# 一直線上で高々2点にする場合は ">=" にする
while len(qs) > 1 and cross3(qs[-1], qs[-2], p) > 0:
qs.pop()
qs.append(p)
t = len(qs)
for i in range(N-2, -1, -1):
p = ps[i]
while len(qs) > t and cross3(qs[-1], qs[-2], p) > 0:
qs.pop()
qs.append(p)
return qs
# O(N)
def inside_convex_polygon0(p0, qs):
L = len(qs)
D = [cross3(qs[i-1], p0, qs[i]) for i in range(L)]
return all(e >= 0 for e in D) or all(e <= 0 for e in D)
# O(log N)
def inside_convex_polygon(p0, qs):
L = len(qs)
left = 1; right = L
q0 = qs[0]
while left+1 < right:
mid = (left + right) >> 1
if cross3(q0, p0, qs[mid]) <= 0:
left = mid
else:
right = mid
if left == L-1:
left -= 1
qi = qs[left]; qj = qs[left+1]
v0 = cross3(q0, qi, qj)
v1 = cross3(q0, p0, qj)
v2 = cross3(q0, qi, p0)
if v0 < 0:
v1 = -v1; v2 = -v2
return 0 <= v1 and 0 <= v2 and v1 + v2 <= v0
# 線分同士の交点判定
def dot3(O, A, B):
ox, oy = O; ax, ay = A; bx, by = B
return (ax - ox) * (bx - ox) + (ay - oy) * (by - oy)
def cross3(O, A, B):
ox, oy = O; ax, ay = A; bx, by = B
return (ax - ox) * (by - oy) - (bx - ox) * (ay - oy)
def dist2(A, B):
ax, ay = A; bx, by = B
return (ax - bx) ** 2 + (ay - by) ** 2
def is_intersection(P0, P1, Q0, Q1):
C0 = cross3(P0, P1, Q0)
C1 = cross3(P0, P1, Q1)
D0 = cross3(Q0, Q1, P0)
D1 = cross3(Q0, Q1, P1)
if C0 == C1 == 0:
E0 = dot3(P0, P1, Q0)
E1 = dot3(P0, P1, Q1)
if not E0 < E1:
E0, E1 = E1, E0
return E0 <= dist2(P0, P1) and 0 <= E1
return C0 * C1 <= 0 and D0 * D1 <= 0
def solve_3(N,K,star):
for p in range(2):
for x,y in star[p]:
S = set()
for xx,yy in star[p^1]:
xx,yy = xx-x,yy-y
g = gcd(xx,yy)
xx,yy = xx//g,yy//g
if (-xx,-yy) in S:
return "Yes"
S.add((xx,yy))
return "No"
def solve_4(N,K,star):
if solve_3(N,K,star) == "Yes":
return "Yes"
star[0].sort()
star[1].sort()
ch = [convex_hull(star[p]) for p in range(2)]
for p in range(2):
if len(star[p^1]) > 2:
for i in range(len(ch[p])-1):
x,y = ch[p][i]
if inside_convex_polygon((x,y),ch[p^1]):
return "Yes"
if len(star[p]) == 2:
a,b = star[p][0],star[p][1]
for i in range(len(ch[p^1])-1):
c,d = ch[p^1][i],ch[p^1][i+1]
if is_intersection(a,b,c,d):
return "Yes"
return "No"
N,K = mi()
star = [[] for p in range(2)]
for _ in range(N):
x,y,c = mi()
star[c-1].append((x,y))
if K == 3:
print(solve_3(N,K,star))
else:
print(solve_4(N,K,star))