結果
問題 | No.2166 Paint and Fill |
ユーザー | maroon_kuri |
提出日時 | 2022-12-28 23:15:27 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2,368 ms / 10,000 ms |
コード長 | 33,520 bytes |
コンパイル時間 | 6,761 ms |
コンパイル使用メモリ | 314,980 KB |
実行使用メモリ | 506,932 KB |
最終ジャッジ日時 | 2024-11-24 01:33:33 |
合計ジャッジ時間 | 64,584 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 50 ms
44,288 KB |
testcase_01 | AC | 379 ms
56,192 KB |
testcase_02 | AC | 1,127 ms
269,056 KB |
testcase_03 | AC | 75 ms
49,864 KB |
testcase_04 | AC | 75 ms
49,860 KB |
testcase_05 | AC | 75 ms
49,792 KB |
testcase_06 | AC | 76 ms
49,732 KB |
testcase_07 | AC | 74 ms
49,792 KB |
testcase_08 | AC | 1,137 ms
269,028 KB |
testcase_09 | AC | 1,108 ms
269,132 KB |
testcase_10 | AC | 1,101 ms
269,208 KB |
testcase_11 | AC | 1,109 ms
269,024 KB |
testcase_12 | AC | 1,102 ms
269,000 KB |
testcase_13 | AC | 2,332 ms
506,804 KB |
testcase_14 | AC | 2,334 ms
506,932 KB |
testcase_15 | AC | 2,330 ms
506,804 KB |
testcase_16 | AC | 2,335 ms
506,804 KB |
testcase_17 | AC | 2,345 ms
506,804 KB |
testcase_18 | AC | 2,325 ms
506,804 KB |
testcase_19 | AC | 2,336 ms
506,804 KB |
testcase_20 | AC | 2,309 ms
506,680 KB |
testcase_21 | AC | 2,321 ms
506,804 KB |
testcase_22 | AC | 2,200 ms
482,668 KB |
testcase_23 | AC | 2,368 ms
506,748 KB |
testcase_24 | AC | 2,308 ms
506,788 KB |
testcase_25 | AC | 51 ms
44,544 KB |
testcase_26 | AC | 51 ms
44,544 KB |
testcase_27 | AC | 1,070 ms
58,736 KB |
testcase_28 | AC | 1,315 ms
58,480 KB |
testcase_29 | AC | 1,067 ms
58,608 KB |
testcase_30 | AC | 1,650 ms
58,608 KB |
testcase_31 | AC | 1,652 ms
58,608 KB |
testcase_32 | AC | 1,655 ms
58,608 KB |
testcase_33 | AC | 1,653 ms
58,480 KB |
testcase_34 | AC | 1,652 ms
58,480 KB |
testcase_35 | AC | 1,656 ms
58,608 KB |
testcase_36 | AC | 1,653 ms
58,604 KB |
testcase_37 | AC | 1,664 ms
58,604 KB |
testcase_38 | AC | 1,653 ms
58,484 KB |
testcase_39 | AC | 1,688 ms
58,612 KB |
ソースコード
#ifndef LOCAL #pragma GCC optimize ("Ofast") #pragma GCC optimize ("unroll-loops") #endif #include <bits/stdc++.h> using namespace std; using ll=long long; //#define int ll #define rng(i,a,b) for(int i=int(a);i<int(b);i++) #define rep(i,b) rng(i,0,b) #define gnr(i,a,b) for(int i=int(b)-1;i>=int(a);i--) #define per(i,b) gnr(i,0,b) #define pb push_back #define eb emplace_back #define a first #define b second #define bg begin() #define ed end() #define all(x) x.bg,x.ed #define si(x) int(x.size()) #ifdef LOCAL #define dmp(x) cerr<<__LINE__<<" "<<#x<<" "<<x<<endl #else #define dmp(x) void(0) #endif template<class t,class u> bool chmax(t&a,u b){if(a<b){a=b;return true;}else return false;} template<class t,class u> bool chmin(t&a,u b){if(b<a){a=b;return true;}else return false;} template<class t> using vc=vector<t>; template<class t> using vvc=vc<vc<t>>; using pi=pair<int,int>; using vi=vc<int>; template<class t,class u> ostream& operator<<(ostream& os,const pair<t,u>& p){ return os<<"{"<<p.a<<","<<p.b<<"}"; } template<class t> ostream& operator<<(ostream& os,const vc<t>& v){ os<<"{"; for(auto e:v)os<<e<<","; return os<<"}"; } #define mp make_pair #define mt make_tuple #define one(x) memset(x,-1,sizeof(x)) #define zero(x) memset(x,0,sizeof(x)) #ifdef LOCAL void dmpr(ostream&os){os<<endl;} template<class T,class... Args> void dmpr(ostream&os,const T&t,const Args&... args){ os<<t<<" "; dmpr(os,args...); } #define dmp2(...) dmpr(cerr,__LINE__,##__VA_ARGS__) #else #define dmp2(...) void(0) #endif using uint=unsigned; using ull=unsigned long long; template<class t,size_t n> ostream& operator<<(ostream&os,const array<t,n>&a){ return os<<vc<t>(all(a)); } template<int i,class T> void print_tuple(ostream&,const T&){ } template<int i,class T,class H,class ...Args> void print_tuple(ostream&os,const T&t){ if(i)os<<","; os<<get<i>(t); print_tuple<i+1,T,Args...>(os,t); } template<class ...Args> ostream& operator<<(ostream&os,const tuple<Args...>&t){ os<<"{"; print_tuple<0,tuple<Args...>,Args...>(os,t); return os<<"}"; } template<class t> void print(t x,int suc=1){ cout<<x; if(suc==1) cout<<"\n"; if(suc==2) cout<<" "; } ll read(){ ll i; cin>>i; return i; } vi readvi(int n,int off=0){ vi v(n); rep(i,n)v[i]=read()+off; return v; } pi readpi(int off=0){ int a,b;cin>>a>>b; return pi(a+off,b+off); } template<class t,class u> void print(const pair<t,u>&p,int suc=1){ print(p.a,2); print(p.b,suc); } template<class t,class u> void print_offset(const pair<t,u>&p,ll off,int suc=1){ print(p.a+off,2); print(p.b+off,suc); } template<class T> void print(const vector<T>&v,int suc=1){ rep(i,v.size()) print(v[i],i==int(v.size())-1?suc:2); } template<class T> void print_offset(const vector<T>&v,ll off,int suc=1){ rep(i,v.size()) print(v[i]+off,i==int(v.size())-1?suc:2); } template<class T,size_t N> void print(const array<T,N>&v,int suc=1){ rep(i,N) print(v[i],i==int(N)-1?suc:2); } string readString(){ string s; cin>>s; return s; } template<class T> T sq(const T& t){ return t*t; } void YES(bool ex=true){ cout<<"YES\n"; if(ex)exit(0); #ifdef LOCAL cout.flush(); #endif } void NO(bool ex=true){ cout<<"NO\n"; if(ex)exit(0); #ifdef LOCAL cout.flush(); #endif } void Yes(bool ex=true){ cout<<"Yes\n"; if(ex)exit(0); #ifdef LOCAL cout.flush(); #endif } void No(bool ex=true){ cout<<"No\n"; if(ex)exit(0); #ifdef LOCAL cout.flush(); #endif } //#define CAPITAL /* void yes(bool ex=true){ #ifdef CAPITAL cout<<"YES"<<"\n"; #else cout<<"Yes"<<"\n"; #endif if(ex)exit(0); #ifdef LOCAL cout.flush(); #endif } void no(bool ex=true){ #ifdef CAPITAL cout<<"NO"<<"\n"; #else cout<<"No"<<"\n"; #endif if(ex)exit(0); #ifdef LOCAL cout.flush(); #endif }*/ void possible(bool ex=true){ #ifdef CAPITAL cout<<"POSSIBLE"<<"\n"; #else cout<<"Possible"<<"\n"; #endif if(ex)exit(0); #ifdef LOCAL cout.flush(); #endif } void impossible(bool ex=true){ #ifdef CAPITAL cout<<"IMPOSSIBLE"<<"\n"; #else cout<<"Impossible"<<"\n"; #endif if(ex)exit(0); #ifdef LOCAL cout.flush(); #endif } constexpr ll ten(int n){ return n==0?1:ten(n-1)*10; } const ll infLL=LLONG_MAX/3; #ifdef int const int inf=infLL; #else const int inf=INT_MAX/2-100; #endif int topbit(signed t){ return t==0?-1:31-__builtin_clz(t); } int topbit(ll t){ return t==0?-1:63-__builtin_clzll(t); } int botbit(signed a){ return a==0?32:__builtin_ctz(a); } int botbit(ll a){ return a==0?64:__builtin_ctzll(a); } int botbit(ull a){ return a==0?64:__builtin_ctzll(a); } int popcount(signed t){ return __builtin_popcount(t); } int popcount(ll t){ return __builtin_popcountll(t); } int popcount(ull t){ return __builtin_popcountll(t); } bool ispow2(int i){ return i&&(i&-i)==i; } ll mask(int i){ return (ll(1)<<i)-1; } bool inc(int a,int b,int c){ return a<=b&&b<=c; } template<class t> void mkuni(vc<t>&v){ sort(all(v)); v.erase(unique(all(v)),v.ed); } ll rand_int(ll l, ll r) { //[l, r] #ifdef LOCAL static mt19937_64 gen; #else static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count()); #endif return uniform_int_distribution<ll>(l, r)(gen); } template<class t> void myshuffle(vc<t>&a){ rep(i,si(a))swap(a[i],a[rand_int(0,i)]); } template<class t> int lwb(const vc<t>&v,const t&a){ return lower_bound(all(v),a)-v.bg; } vvc<int> readGraph(int n,int m){ vvc<int> g(n); rep(i,m){ int a,b; cin>>a>>b; //sc.read(a,b); a--;b--; g[a].pb(b); g[b].pb(a); } return g; } vvc<int> readTree(int n){ return readGraph(n,n-1); } vc<ll> presum(const vi&a){ vc<ll> s(si(a)+1); rep(i,si(a))s[i+1]=s[i]+a[i]; return s; } //mint107 は verify してねえ //#define DYNAMIC_MOD struct modinfo{uint mod,root; #ifdef DYNAMIC_MOD constexpr modinfo(uint m,uint r):mod(m),root(r),im(0){set_mod(m);} ull im; constexpr void set_mod(uint m){ mod=m; im=ull(-1)/m+1; } uint product(uint a,uint b)const{ ull z=ull(a)*b; uint x=((unsigned __int128)z*im)>>64; uint v=uint(z)-x*mod; return v<mod?v:v+mod; } #endif }; template<modinfo const&ref> struct modular{ static constexpr uint const &mod=ref.mod; static modular root(){return modular(ref.root);} uint v; //modular(initializer_list<uint>ls):v(*ls.bg){} modular(ll vv=0){s(vv%mod+mod);} modular& s(uint vv){ v=vv<mod?vv:vv-mod; return *this; } modular operator-()const{return modular()-*this;} modular& operator+=(const modular&rhs){return s(v+rhs.v);} modular&operator-=(const modular&rhs){return s(v+mod-rhs.v);} modular&operator*=(const modular&rhs){ #ifndef DYNAMIC_MOD v=ull(v)*rhs.v%mod; #else v=ref.product(v,rhs.v); #endif return *this; } modular&operator/=(const modular&rhs){return *this*=rhs.inv();} modular operator+(const modular&rhs)const{return modular(*this)+=rhs;} modular operator-(const modular&rhs)const{return modular(*this)-=rhs;} modular operator*(const modular&rhs)const{return modular(*this)*=rhs;} modular operator/(const modular&rhs)const{return modular(*this)/=rhs;} modular pow(ll n)const{ if(n<0)return inv().pow(-n); modular res(1),x(*this); while(n){ if(n&1)res*=x; x*=x; n>>=1; } return res; } modular inv()const{return pow(mod-2);} /*modular inv()const{ int x,y; int g=extgcd<ll>(v,mod,x,y); assert(g==1); if(x<0)x+=mod; return modular(x); }*/ friend modular operator+(ll x,const modular&y){ return modular(x)+y; } friend modular operator-(ll x,const modular&y){ return modular(x)-y; } friend modular operator*(ll x,const modular&y){ return modular(x)*y; } friend modular operator/(ll x,const modular&y){ return modular(x)/y; } friend ostream& operator<<(ostream&os,const modular&m){ return os<<m.v; } friend istream& operator>>(istream&is,modular&m){ ll x;is>>x; m=modular(x); return is; } bool operator<(const modular&r)const{return v<r.v;} bool operator==(const modular&r)const{return v==r.v;} bool operator!=(const modular&r)const{return v!=r.v;} explicit operator bool()const{ return v; } }; #define USE_GOOD_MOD //size of input must be a power of 2 //output of forward fmt is bit-reversed //output elements are in the range [0,mod*4) //input of inverse fmt should be bit-reversed template<class mint> void inplace_fmt(const int n,mint*const f,bool inv){ static constexpr uint mod=mint::mod; static constexpr uint mod2=mod*2; static constexpr int L=30; static mint g[L],ig[L],p2[L]; if(g[0].v==0){ rep(i,L){ mint w=-mint::root().pow(((mod-1)>>(i+2))*3); g[i]=w; ig[i]=w.inv(); p2[i]=mint(1<<i).inv(); } } if(!inv){ int b=n; if(b>>=1){//input:[0,mod) rep(i,b){ uint x=f[i+b].v; f[i+b].v=f[i].v+mod-x; f[i].v+=x; } } if(b>>=1){//input:[0,mod*2) mint p=1; for(int i=0,k=0;i<n;i+=b*2){ rng(j,i,i+b){ uint x=(f[j+b]*p).v; f[j+b].v=f[j].v+mod-x; f[j].v+=x; } p*=g[__builtin_ctz(++k)]; } } while(b){ if(b>>=1){//input:[0,mod*3) mint p=1; for(int i=0,k=0;i<n;i+=b*2){ rng(j,i,i+b){ uint x=(f[j+b]*p).v; f[j+b].v=f[j].v+mod-x; f[j].v+=x; } p*=g[__builtin_ctz(++k)]; } } if(b>>=1){//input:[0,mod*4) mint p=1; for(int i=0,k=0;i<n;i+=b*2){ rng(j,i,i+b){ uint x=(f[j+b]*p).v; f[j].v=(f[j].v<mod2?f[j].v:f[j].v-mod2); f[j+b].v=f[j].v+mod-x; f[j].v+=x; } p*=g[__builtin_ctz(++k)]; } } } }else{ int b=1; if(b<n/2){//input:[0,mod) mint p=1; for(int i=0,k=0;i<n;i+=b*2){ rng(j,i,i+b){ ull x=f[j].v+mod-f[j+b].v; f[j].v+=f[j+b].v; f[j+b].v=x*p.v%mod; } p*=ig[__builtin_ctz(++k)]; } b<<=1; } for(;b<n/2;b<<=1){ mint p=1; for(int i=0,k=0;i<n;i+=b*2){ rng(j,i,i+b/2){//input:[0,mod*2) ull x=f[j].v+mod2-f[j+b].v; f[j].v+=f[j+b].v; f[j].v=(f[j].v)<mod2?f[j].v:f[j].v-mod2; f[j+b].v=x*p.v%mod; } rng(j,i+b/2,i+b){//input:[0,mod) ull x=f[j].v+mod-f[j+b].v; f[j].v+=f[j+b].v; f[j+b].v=x*p.v%mod; } p*=ig[__builtin_ctz(++k)]; } } if(b<n){//input:[0,mod*2) rep(i,b){ uint x=f[i+b].v; f[i+b].v=f[i].v+mod2-x; f[i].v+=x; } } mint z=p2[__lg(n)]; rep(i,n)f[i]*=z; } } template<class mint> void inplace_fmt(vector<mint>&f,bool inv){ inplace_fmt(si(f),f.data(),inv); } //size of input must be a power of 2 //output elements are in the range [0,mod*4) template<class mint> void half_fmt(const int n,mint*const f){ static constexpr uint mod=mint::mod; static constexpr uint mod2=mod*2; static const int L=30; static mint g[L],h[L]; if(g[0].v==0){ rep(i,L){ g[i]=-mint::root().pow(((mod-1)>>(i+2))*3); h[i]=mint::root().pow((mod-1)>>(i+2)); } } int b=n; int lv=0; if(b>>=1){//input:[0,mod) mint p=h[lv++]; for(int i=0,k=0;i<n;i+=b*2){ rng(j,i,i+b){ uint x=(f[j+b]*p).v; f[j+b].v=f[j].v+mod-x; f[j].v+=x; } p*=g[__builtin_ctz(++k)]; } } if(b>>=1){//input:[0,mod*2) mint p=h[lv++]; for(int i=0,k=0;i<n;i+=b*2){ rng(j,i,i+b){ uint x=(f[j+b]*p).v; f[j+b].v=f[j].v+mod-x; f[j].v+=x; } p*=g[__builtin_ctz(++k)]; } } while(b){ if(b>>=1){//input:[0,mod*3) mint p=h[lv++]; for(int i=0,k=0;i<n;i+=b*2){ rng(j,i,i+b){ uint x=(f[j+b]*p).v; f[j+b].v=f[j].v+mod-x; f[j].v+=x; } p*=g[__builtin_ctz(++k)]; } } if(b>>=1){//input:[0,mod*4) mint p=h[lv++]; for(int i=0,k=0;i<n;i+=b*2){ rng(j,i,i+b){ uint x=(f[j+b]*p).v; f[j].v=(f[j].v<mod2?f[j].v:f[j].v-mod2); f[j+b].v=f[j].v+mod-x; f[j].v+=x; } p*=g[__builtin_ctz(++k)]; } } } } template<class mint> void half_fmt(vector<mint>&f){ half_fmt(si(f),f.data()); } #ifdef USE_GOOD_MOD template<class mint> vc<mint> multiply(vc<mint> x,const vc<mint>&y,bool same=false){ int n=si(x)+si(y)-1; int s=1; while(s<n)s*=2; x.resize(s);inplace_fmt(x,false); if(!same){ static vc<mint> z; z.clear();z.resize(s); rep(i,si(y))z[i]=y[i]; inplace_fmt(z,false); rep(i,s)x[i]*=z[i]; }else{ rep(i,s)x[i]*=x[i]; } inplace_fmt(x,true);x.resize(n); return x; } template<class mint> vc<mint> multiply_givenlength(vc<mint> x,const vc<mint>&y,bool same=false){ int s=si(x); assert(ispow2(s)); assert(si(y)); x.resize(s);inplace_fmt(x,false); if(!same){ vc<mint> z(s); rep(i,si(y))z[i]=y[i]; inplace_fmt(z,false); rep(i,s)x[i]*=z[i]; }else{ rep(i,s)x[i]*=x[i]; } inplace_fmt(x,true); return x; } #else //59501818244292734739283969-1=5.95*10^25 までの値を正しく計算 //最終的な列の大きさが 2^24 までなら動く //最終的な列の大きさが 2^20 以下のときは,下の 3 つの素数を使ったほうが速い(は?) //VERIFY: yosupo //Yukicoder No980 (same=true) namespace arbitrary_convolution{ constexpr modinfo base0{167772161,3};//2^25 * 5 + 1 constexpr modinfo base1{469762049,3};//2^26 * 7 + 1 constexpr modinfo base2{754974721,11};//2^24 * 45 + 1 //extern constexpr modinfo base0{1045430273,3};//2^20 * 997 + 1 //extern constexpr modinfo base1{1051721729,6};//2^20 * 1003 + 1 //extern constexpr modinfo base2{1053818881,7};//2^20 * 1005 + 1 using mint0=modular<base0>; using mint1=modular<base1>; using mint2=modular<base2>; template<class t,class mint> vc<t> sub(const vc<mint>&x,const vc<mint>&y,bool same=false){ int n=si(x)+si(y)-1; int s=1; while(s<n)s*=2; vc<t> z(s);rep(i,si(x))z[i]=x[i].v; inplace_fmt(z,false); if(!same){ vc<t> w(s);rep(i,si(y))w[i]=y[i].v; inplace_fmt(w,false); rep(i,s)z[i]*=w[i]; }else{ rep(i,s)z[i]*=z[i]; } inplace_fmt(z,true);z.resize(n); return z; } template<class mint> vc<mint> multiply(const vc<mint>&x,const vc<mint>&y,bool same=false){ auto d0=sub<mint0>(x,y,same); auto d1=sub<mint1>(x,y,same); auto d2=sub<mint2>(x,y,same); int n=si(d0); vc<mint> res(n); static const mint1 r01=mint1(mint0::mod).inv(); static const mint2 r02=mint2(mint0::mod).inv(); static const mint2 r12=mint2(mint1::mod).inv(); static const mint2 r02r12=r02*r12; static const mint w1=mint(mint0::mod); static const mint w2=w1*mint(mint1::mod); rep(i,n){ ull a=d0[i].v; ull b=(d1[i].v+mint1::mod-a)*r01.v%mint1::mod; ull c=((d2[i].v+mint2::mod-a)*r02r12.v+(mint2::mod-b)*r12.v)%mint2::mod; res[i].v=(a+b*w1.v+c*w2.v)%mint::mod; } return res; } template<class t,class mint> vc<t> sub_givenlength(const vc<mint>&x,const vc<mint>&y,bool same=false){ int s=si(x); assert(ispow2(s)); assert(si(y)==s); vc<t> z(s);rep(i,si(x))z[i]=x[i].v; inplace_fmt(z,false); if(!same){ vc<t> w(s);rep(i,si(y))w[i]=y[i].v; inplace_fmt(w,false); rep(i,s)z[i]*=w[i]; }else{ rep(i,s)z[i]*=z[i]; } inplace_fmt(z,true); return z; } template<class mint> vc<mint> multiply_givenlength(const vc<mint>&x,const vc<mint>&y,bool same=false){ auto d0=sub_givenlength<mint0>(x,y,same); auto d1=sub_givenlength<mint1>(x,y,same); auto d2=sub_givenlength<mint2>(x,y,same); int n=si(d0); vc<mint> res(n); static const mint1 r01=mint1(mint0::mod).inv(); static const mint2 r02=mint2(mint0::mod).inv(); static const mint2 r12=mint2(mint1::mod).inv(); static const mint2 r02r12=r02*r12; static const mint w1=mint(mint0::mod); static const mint w2=w1*mint(mint1::mod); rep(i,n){ ull a=d0[i].v; ull b=(d1[i].v+mint1::mod-a)*r01.v%mint1::mod; ull c=((d2[i].v+mint2::mod-a)*r02r12.v+(mint2::mod-b)*r12.v)%mint2::mod; res[i].v=(a+b*w1.v+c*w2.v)%mint::mod; } return res; } } using arbitrary_convolution::multiply; using arbitrary_convolution::multiply_givenlength; #endif //UTPC2021 C namespace integer_convolution{ extern constexpr modinfo base0{1045430273,3};//2^20 * 997 + 1 extern constexpr modinfo base1{1051721729,6};//2^20 * 1003 + 1 //extern constexpr modinfo base0{469762049,3};//2^26 * 7 + 1 //extern constexpr modinfo base1{754974721,11};//2^24 * 45 + 1 using mint0=modular<base0>; using mint1=modular<base1>; template<class t> vc<t> sub(const vi&x,const vi&y,bool same=false){ int n=si(x)+si(y)-1; int s=1; while(s<n)s*=2; vc<t> z(s);rep(i,si(x))z[i]=x[i]; inplace_fmt(z,false); if(!same){ vc<t> w(s);rep(i,si(y))w[i]=y[i]; inplace_fmt(w,false); rep(i,s)z[i]*=w[i]; }else{ rep(i,s)z[i]*=z[i]; } inplace_fmt(z,true);z.resize(n); return z; } vi multiply(const vi&x,const vi&y,bool same=false){ auto d0=sub<mint0>(x,y,same); auto d1=sub<mint1>(x,y,same); const mint1 r=mint1(mint0::mod).inv(); const ll v=ll(mint0::mod)*mint1::mod; int n=si(d0); vi res(n); rep(i,n){ res[i]=d0[i].v+(r*(d1[i]-d0[i].v)).v*(ull)mint0::mod; if(res[i]>v/2)res[i]-=v; } return res; } } //最大で 1<<mx のサイズの fft が登場! template<class mint> vc<mint> large_convolution(const vc<mint>&a,const vc<mint>&b,int mx){ int n=si(a),m=si(b); vc<mint> c(n+m-1); int len=1<<(mx-1); for(int i=0;i<n;i+=len){ for(int j=0;j<n;j+=len){ int x=min(len,n-i),y=min(len,m-j); auto d=multiply(vc<mint>(a.bg+i,a.bg+i+x),vc<mint>(b.bg+j,b.bg+j+y)); rep(k,si(d)) c[i+j+k]+=d[k]; } } return c; } //input A: N 次,B ?,M //output D: M 次多項式 //C を M 次多項式として //[x^N] A*B*C = [x^M] D*C //となるような D を返す //CF796F template<class mint> vc<mint> transpose_advance(const vc<mint>&a,const vc<mint>&b,int m){ int n=si(a)-1; auto d=multiply(a,b); vc<mint> res(m+1); if(n>=m){ rep(i,m+1)res[i]=d[i+n-m]; }else{ rng(i,m-n,m+1)res[i]=d[i+n-m]; } return res; } template<class mint> void chmult(vc<mint>&x,const vc<mint>&y,int s){ x=multiply(move(x),y); x.resize(s); } //Poly というのは常にサイズ 1 以上であることにしよう //low のあたりをかならずサイズ s のものを返すようにいじった //その影響で何かが起きているかも知れないし,起きていないかも知れない template<class mint> struct Poly:public vc<mint>{ template<class...Args> Poly(Args...args):vc<mint>(args...){} Poly(initializer_list<mint>init):vc<mint>(all(init)){} int size()const{ return vc<mint>::size(); } void ups(int s){ if(size()<s)this->resize(s,0); } Poly low(int s)const{ assert(s); Poly res(s); rep(i,min(s,size()))res[i]=(*this)[i]; return res; } Poly rev()const{ auto r=*this; reverse(all(r)); return r; } Poly operator>>(int x)const{ assert(x<size()); Poly res(size()-x); rep(i,size()-x)res[i]=(*this)[i+x]; return res; } Poly operator<<(int x)const{ Poly res(size()+x); rep(i,size())res[i+x]=(*this)[i]; return res; } mint freq(int i)const{ return i<size()?(*this)[i]:0; } Poly operator-()const{ Poly res=*this; for(auto&v:res)v=-v; return res; } Poly& operator+=(const Poly&r){ ups(r.size()); rep(i,r.size()) (*this)[i]+=r[i]; return *this; } template<class T> Poly& operator+=(T t){ (*this)[0]+=t; return *this; } Poly& operator-=(const Poly&r){ ups(r.size()); rep(i,r.size()) (*this)[i]-=r[i]; return *this; } template<class T> Poly& operator-=(T t){ (*this)[0]-=t; return *this; } template<class T> Poly& operator*=(T t){ for(auto&v:*this) v*=t; return *this; } Poly& operator*=(const Poly&r){ return *this=multiply(*this,r); } Poly square()const{ return multiply(*this,*this,true); } #ifndef USE_GOOD_MOD Poly inv(int s)const{ Poly r{mint(1)/(*this)[0]}; for(int n=1;n<s;n*=2) r=r*2-(r.square()*low(2*n)).low(2*n); r.resize(s); return r; } #else //source: Section 4 of "Removing redundancy from high-precision Newton iteration" // 5/3 Poly inv(int s)const{ Poly r(s); r[0]=mint(1)/(*this)[0]; for(int n=1;n<s;n*=2){ vc<mint> f=low(2*n); f.resize(2*n); inplace_fmt(f,false); vc<mint> g=r.low(2*n); g.resize(2*n); inplace_fmt(g,false); rep(i,2*n)f[i]*=g[i]; inplace_fmt(f,true); rep(i,n)f[i]=0; inplace_fmt(f,false); rep(i,2*n)f[i]*=g[i]; inplace_fmt(f,true); rng(i,n,min(2*n,s))r[i]=-f[i]; } return r; } #endif template<class T> Poly& operator/=(T t){ return *this*=mint(1)/mint(t); } Poly quotient(const Poly&r,const Poly&rri)const{ int m=r.size(); assert(r[m-1].v); int n=size(); int s=n-m+1; if(s<=0) return {0}; return (rev().low(s)*rri.low(s)).low(s).rev(); } Poly& operator/=(const Poly&r){ return *this=quotient(r,r.rev().inv(max(size()-r.size(),int(0))+1)); } Poly& operator%=(const Poly&r){ *this-=*this/r*r; return *this=low(r.size()-1); } Poly operator+(const Poly&r)const{return Poly(*this)+=r;} template<class T> Poly operator+(T t)const{return Poly(*this)+=t;} Poly operator-(const Poly&r)const{return Poly(*this)-=r;} template<class T> Poly operator-(T t)const{return Poly(*this)-=t;} template<class T> Poly operator*(T t)const{return Poly(*this)*=t;} Poly operator*(const Poly&r)const{return Poly(*this)*=r;} template<class T> Poly operator/(T t)const{return Poly(*this)/=t;} Poly operator/(const Poly&r)const{return Poly(*this)/=r;} Poly operator%(const Poly&r)const{return Poly(*this)%=r;} Poly dif()const{ assert(size()); if(size()==1){ return {0}; }else{ Poly r(size()-1); rep(i,r.size()) r[i]=(*this)[i+1]*(i+1); return r; } } Poly inte(const mint invs[])const{ Poly r(size()+1,0); rep(i,size()) r[i+1]=(*this)[i]*invs[i+1]; return r; } //VERIFY: yosupo //opencupXIII GP of Peterhof H Poly log(int s,const mint invs[])const{ assert((*this)[0]==1); if(s==1)return {0}; return (low(s).dif()*inv(s-1)).low(s-1).inte(invs); } //Petrozavodsk 2019w mintay1 G //yosupo judge //UOJ Round23 C Poly exp(int s,const mint invs[])const{ assert((*this)[0]==mint(0)); Poly f{1},g{1}; for(int n=1;;n*=2){ if(n>=s)break; g=g*2-(g.square()*f).low(n); //if(n>=s)break; Poly q=low(n).dif(); q=q+g*(f.dif()-f*q).low(2*n-1); f=f+(f*(low(2*n)-q.inte(invs))).low(2*n); } return f.low(s); } //exp(x),exp(-x) のペアを返す //UOJ Round23 C pair<Poly,Poly> exp2(int s,const mint invs[])const{ assert((*this)[0]==mint(0)); Poly f{1},g{1}; for(int n=1;;n*=2){ //if(n>=s)break; g=g*2-(g.square()*f).low(n); if(n>=s)break; Poly q=low(n).dif(); q=q+g*(f.dif()-f*q).low(2*n-1); f=f+(f*(low(2*n)-q.inte(invs))).low(2*n); } return make_pair(f.low(s),g.low(s)); } #ifndef USE_GOOD_MOD //CF250 E Poly sqrt(int s)const{ assert((*this)[0]==1); static const mint half=mint(1)/mint(2); Poly r{1}; for(int n=1;n<s;n*=2) r=(r+(r.inv(n*2)*low(n*2)).low(n*2))*half; return r.low(s); } #else //11/6 //VERIFY: yosupo Poly sqrt(int s)const{ assert((*this)[0]==1); static const mint half=mint(1)/mint(2); vc<mint> f{1},g{1},z{1}; for(int n=1;n<s;n*=2){ rep(i,n)z[i]*=z[i]; inplace_fmt(z,true); vc<mint> delta(2*n); rep(i,n)delta[n+i]=z[i]-freq(i)-freq(n+i); inplace_fmt(delta,false); vc<mint> gbuf(2*n); rep(i,n)gbuf[i]=g[i]; inplace_fmt(gbuf,false); rep(i,2*n)delta[i]*=gbuf[i]; inplace_fmt(delta,true); f.resize(2*n); rng(i,n,2*n)f[i]=-half*delta[i]; if(2*n>=s)break; z=f; inplace_fmt(z,false); vc<mint> eps=gbuf; rep(i,2*n)eps[i]*=z[i]; inplace_fmt(eps,true); rep(i,n)eps[i]=0; inplace_fmt(eps,false); rep(i,2*n)eps[i]*=gbuf[i]; inplace_fmt(eps,true); g.resize(2*n); rng(i,n,2*n)g[i]=-eps[i]; } f.resize(s); return f; } #endif pair<Poly,Poly> divide(const Poly&r,const Poly&rri)const{ Poly a=quotient(r,rri); Poly b=*this-a*r; return make_pair(a,b.low(r.size()-1)); } //Yukicoder No.215 Poly pow_mod(int n,const Poly&r)const{ Poly rri=r.rev().inv(r.size()); Poly cur{1},x=*this%r; while(n){ if(n%2) cur=(cur*x).divide(r,rri).b; x=(x*x).divide(r,rri).b; n/=2; } return cur; } int lowzero()const{ rep(i,size())if((*this)[i]!=0)return i; return size(); } //VERIFY: yosupo //UOJ Round23 C (z=0,p<0) Poly pow(int s,int p,const mint invs[])const{ assert(s>0); int n=size(),z=0; for(;z<n&&(*this)[z]==0;z++); assert(z==0||p>=0); if(z*p>=s)return Poly(s,0); mint c=(*this)[z],cinv=c.inv(); mint d=c.pow(p); int t=s-z*p; Poly x(t); rng(i,z,min(z+t,n))x[i-z]=(*this)[i]*cinv; x=x.log(t,invs); rep(i,t)x[i]*=p; x=x.exp(t,invs); rep(i,t)x[i]*=d; Poly y(s); rep(i,t)y[z*p+i]=x[i]; return y; } mint eval(mint x)const{ mint r=0,w=1; for(auto v:*this){ r+=w*v; w*=x; } return r; } }; //CF641 F2 //f*x^(-a) template<class mint> struct Laurent{ Poly<mint> f; int a; Laurent(const Poly<mint>&num,const Poly<mint>&den,int s){ a=den.lowzero(); assert(a<si(den)); f=(num*(den>>a).inv(s)).low(s); } Laurent(const Poly<mint>&ff,int aa):f(ff),a(aa){} Laurent dif()const{ return Laurent(f*(-a)+(f.dif()<<1),a+1); } mint&operator[](int i){ assert(inc(0,i+a,si(f)-1)); return f[i+a]; } }; template<class mint> ll m2l(mint a){ return a.v<mint::mod/2?a.v:ll(a.v)-ll(mint::mod); } template<class mint> void showpoly(const Poly<mint>&a){ vi tmp(si(a)); rep(i,si(a)){ tmp[i]=m2l(a[i]); } cerr<<tmp<<endl; } #ifndef DYNAMIC_MOD extern constexpr modinfo base{998244353,3}; //extern constexpr modinfo base{1000000007,0}; //modinfo base{1,0}; #ifdef USE_GOOD_MOD static_assert(base.mod==998244353); #endif #else modinfo base(1,0); extern constexpr modinfo base107(1000000007,0); using mint107=modular<base107>; #endif using mint=modular<base>; mint parity(int i){ return i%2==0?1:-1; } #ifdef LOCAL const int vmax=1010; #else const int vmax=(1<<21)+10; #endif mint fact[vmax],finv[vmax],invs[vmax]; void initfact(){ fact[0]=1; rng(i,1,vmax){ fact[i]=fact[i-1]*i; } finv[vmax-1]=fact[vmax-1].inv(); for(int i=vmax-2;i>=0;i--){ finv[i]=finv[i+1]*(i+1); } for(int i=vmax-1;i>=1;i--){ invs[i]=finv[i]*fact[i-1]; } } mint choose(int n,int k){ return fact[n]*finv[n-k]*finv[k]; } mint binom(int a,int b){ return fact[a+b]*finv[a]*finv[b]; } mint catalan(int n){ return binom(n,n)-(n-1>=0?binom(n-1,n+1):0); } /* const int vmax=110; mint binbuf[vmax][vmax]; mint choose(int n,int k){ return binbuf[n-k][k]; } mint binom(int a,int b){ return binbuf[a][b]; } void initfact(){ binbuf[0][0]=1; rep(i,vmax)rep(j,vmax){ if(i)binbuf[i][j]+=binbuf[i-1][j]; if(j)binbuf[i][j]+=binbuf[i][j-1]; } } */ mint p2[vmax],p2inv[vmax]; void initp2(){ p2[0]=1; rep(i,vmax-1)p2[i+1]=p2[i]*2; p2inv[vmax-1]=p2[vmax-1].inv(); per(i,vmax-1)p2inv[i]=p2inv[i+1]*2; } //verify yosupo vc<mint> sampling_shift(vc<mint> a,mint c,int m){ int n=si(a); rep(i,n)a[i]*=finv[i]; vc<mint> b(finv,finv+n); rep(i,n)b[i]*=parity(i); chmult(a,b,n); rep(i,n)a[i]*=fact[i]; reverse(all(a)); mint w=1; rep(i,n){ b[i]=finv[i]*w; w*=(c-i); } chmult(a,b,n); reverse(all(a)); rep(i,n)a[i]*=finv[i]; a.resize(m); b.resize(m); rep(i,m)b[i]=finv[i]; chmult(a,b,m); rep(i,m)a[i]*=fact[i]; return a; } void extend_poly(vc<mint>&a,int m){ int n=si(a); rep(i,n)a[i]*=finv[i]; vc<mint> b(finv,finv+n); rep(i,n)b[i]*=parity(i); chmult(a,b,n); a.resize(m); b.resize(m); rep(i,m)b[i]=finv[i]; chmult(a,b,m); rep(i,m)a[i]*=fact[i]; } void extend_polys(vvc<mint>&as,int m){ int n=si(as[0]); for(auto&a:as)assert(si(a)==n); for(auto&a:as)rep(i,n)a[i]*=finv[i]; vc<mint> b(finv,finv+n); rep(i,n)b[i]*=parity(i); for(auto&a:as)chmult(a,b,n); for(auto&a:as)a.resize(m); b.resize(m); rep(i,m)b[i]=finv[i]; for(auto&a:as)chmult(a,b,m); for(auto&a:as)rep(i,m)a[i]*=fact[i]; } struct large_factorial{ int s; vc<mint> x; large_factorial():s(1),x(1,1){ while(sq<ll>(s)<mint::mod-1){ extend_poly(x,4*s); rep(i,2*s)x[i]=x[i*2]*(s*(2*i+1)+1)*x[i*2+1]; x.resize(s*=2); } rep(i,s)x[i]*=i*s+1; } mint getfact(int i){ int p=i/s; mint res=1; rep(j,p)res*=x[j]; rng(j,p*s,i)res*=j+1; return res; } }; //Codechef 2021 January Lunchtime EXPGROUP //yosupo product of polynomial sequence struct F{ int n; vc<mint> rw,buf; static int getp2(int v){ return 1<<(topbit(v-1)+1); } F():n(0){} F(const vc<mint>&given):rw(given){ n=si(rw); assert(n>0); } F(initializer_list<mint> init):rw(all(init)){ n=si(rw); assert(n>0); } int size()const{return n;} bool empty()const{return n==0;} void assume_have(){ if(rw.empty()){ int s=getp2(n); assert(si(buf)>=s); rw.resize(s); rep(i,s)rw[i]=buf[i].v; inplace_fmt(rw,true); rw.resize(n); } assert(si(rw)==n); } vc<mint> getrw(){ assume_have(); return rw; } void prepare(int len){ if(si(buf)<len)assume_have(); if(buf.empty()){ int s=getp2(n); buf.resize(s); rep(i,n)buf[i]=rw[i]; inplace_fmt(buf,false); } while(si(buf)<len){ int s=si(buf); buf.resize(s*2); rep(i,n)buf[s+i]=rw[i]; half_fmt(s,buf.data()+s); } } void copy_from(F&a){ n=a.n; rw=a.rw; if(si(a.buf)){ int s=getp2(n); buf.resize(s); rep(i,s)buf[i]=a.buf[i]; }else buf.clear(); } void init_from_sum(F&a,F&b){ if(a.empty())return copy_from(b); if(b.empty())return copy_from(a); n=max(a.n,b.n); if(si(a.rw)&&si(b.rw)){ rw.resize(n); rep(i,n){ rw[i]=0; if(i<a.n)rw[i]+=a.rw[i]; if(i<b.n)rw[i]+=b.rw[i]; } }else rw.clear(); int s=getp2(n); if(si(a.buf)>=s&&si(b.buf)>=s){ buf.resize(s); rep(i,s)buf[i]=mint(a.buf[i].v)+mint(b.buf[i].v); }else buf.clear(); if(rw.empty()&&buf.empty()){ a.prepare(n); b.prepare(n); buf.resize(s); rep(i,s)buf[i]=mint(a.buf[i].v)+mint(b.buf[i].v); } } void init_from_product(F&a,F&b){ assert(a.n>0); assert(b.n>0); n=a.n+b.n-1; rw.clear(); int s=getp2(n); a.prepare(n); b.prepare(n); buf.resize(s); rep(i,s)buf[i]=a.buf[i]*b.buf[i]; } F operator*(F&b){ F res; res.init_from_product(*this,b); return res; } F operator+(F&b){ F res; res.init_from_sum(*this,b); return res; } F operator+(F&&b){ F res; res.init_from_sum(*this,b); return res; } F& operator*=(F&b){ return *this=(*this)*b; } F& operator+=(F&b){ return *this=(*this)+b; } F& operator+=(F&&b){ return *this=(*this)+b; } void freememory(){ n=0; vc<mint>().swap(rw); vc<mint>().swap(buf); } }; //転置原理 //a,b: x の多項式 //n=deg(a),m=deg(b) //a*b の各係数に何かをかけたものが答え(に寄与),という状況があったとする //これは適当な関数 c があって,ans+=[x^{n+m}] a*b*c という風に書ける //b が入力で固定されているならば,deg(d)=n なる多項式 d であって, //ans+=[x^n] a*d となるものがある //そのような d を持ってくる F middle(F&b,F&c){ int m=si(b)-1,nm=si(c)-1,n=nm-m; assert(n>=0); int s=F::getp2(nm+1); b.prepare(s); c.prepare(s); static vc<mint> buf; buf.resize(s); rep(i,s)buf[i]=b.buf[i]*c.buf[i]; inplace_fmt(buf,true); rep(i,n+1)buf[i]=buf[i+m]; buf.resize(n+1); return F(buf); } void slv1(int t){ using V=array<F,2>; using M=array<V,2>; int kmax=0; vc<pi> nk(t); for(auto&[n,k]:nk){ ll N; cin>>N>>k; n=N%mint::mod; chmax(kmax,k); } vc<pi> qs; rep(i,kmax)qs.eb(i,inf); rep(i,t)qs.eb(nk[i].b,i); sort(all(qs)); int s=si(qs); using T=tuple<M,F>; vc<T> buf(2*s); auto getid=[&](int l,int r){ if(r-l==1)return l+r; else return (l+r)/2*2; }; { auto dfs=[&](auto self,int l,int r)->void{ auto&[a,b]=buf[getid(l,r)]; if(r-l==1){ if(qs[l].b<inf){ mint x=nk[qs[l].b].a; a[0][0]={1,-x}; a[0][1]={0,0}; a[1][0]={0,0}; a[1][1]={1,-x}; b={1,-x}; }else{ int i=qs[l].a; a[0][0]={2,-2*i}; a[0][1]={i,-mint(i)*(i-1)*invs[2]}; a[1][0]={0,1}; a[1][1]={0,0}; b={0,1}; } }else{ int m=(l+r)/2; self(self,l,m); self(self,m,r); auto&[al,bl]=buf[getid(l,m)]; auto&[ar,br]=buf[getid(m,r)]; rep(i,2)rep(j,2)rep(k,2) a[i][k]+=ar[i][j]*al[j][k]; b=br*bl; } }; dfs(dfs,0,s); } V ini; { auto&[a,b]=buf[getid(0,s)]; Poly<mint> rw=b.getrw(); rw.erase(rw.bg,rw.bg+kmax); rw=rw.inv(kmax+1); rw.resize(s); rotate(rw.bg,rw.bg+kmax+1,rw.ed); ini[0]=rw; ini[1]=vc<mint>(s); } vc<mint> ans(t); { auto dfs=[&](auto self,int l,int r,V&z)->void{ rep(k,2)assert(si(z[k])==r-l); { auto&[a,b]=buf[getid(l,r)]; rep(i,2)rep(j,2)a[i][j].freememory(); b.freememory(); } if(r-l==1){ mint val=z[0].getrw()[0]; if(qs[l].b<inf)ans[qs[l].b]=val; rep(k,2)z[k].freememory(); }else{ int m=(l+r)/2; auto&[al,bl]=buf[getid(l,m)]; auto&[ar,br]=buf[getid(m,r)]; V zl,zr; rep(i,2)zl[i]=middle(br,z[i]); rep(i,2)rep(j,2)zr[i]+=middle(al[i][j],z[j]); rep(k,2)z[k].freememory(); self(self,l,m,zl); self(self,m,r,zr); } }; dfs(dfs,0,s,ini); } rep(i,t)print(ans[i]); } void slv2(){ int n,k; { ll N,K; cin>>N>>K; if(K>=mint::mod)return print(0); n=N%mint::mod; k=K; } vvc<mint> a(4); rep(i,3){ a[0].pb(2*n-2*i); a[1].pb((n-(i-1)*invs[2])*i); a[2].pb(1); a[3].pb(0); } int s=1; while((ll)s*(2*s+1)<k){ extend_polys(a,8*s+2); rep(i,4*s+1){ mint v[2][2]; rep(x,2)rep(y,2)rep(z,2) v[x][z]+=a[x*2+y][i*2+1]*a[y*2+z][i*2]; rep(x,2)rep(y,2) a[x*2+y][i]=v[x][y]; } rep(j,4)a[j].resize(4*s+1); s*=2; } int p=k/s; mint v[2]{1,0}; rep(i,p){ mint w[2]; rep(x,2)rep(y,2) w[x]+=a[x*2+y][i]*v[y]; swap(v,w); } rng(i,p*s,k){ mint tmp=v[0]; v[0]=(2*n-2*i)*v[0]+(n-(i-1)*invs[2])*i*v[1]; v[1]=tmp; } print(v[0]); } signed main(){ cin.tie(0); ios::sync_with_stdio(0); cout<<fixed<<setprecision(20); initfact(); int t;cin>>t; if(t<=5){rep(_,t)slv2();} else{slv1(t);} }