結果
| 問題 |
No.1145 Sums of Powers
|
| ユーザー |
tko919
|
| 提出日時 | 2022-12-29 01:35:34 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 350 ms / 2,000 ms |
| コード長 | 15,573 bytes |
| コンパイル時間 | 3,175 ms |
| コンパイル使用メモリ | 222,876 KB |
| 最終ジャッジ日時 | 2025-02-09 21:40:58 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 6 |
ソースコード
#line 1 "library/Template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(int)(a);i<(int)(b);i++)
#define ALL(v) (v).begin(),(v).end()
using ll=long long int;
const int inf = 0x3fffffff;
const ll INF = 0x1fffffffffffffff;
template<typename T>inline bool chmax(T& a,T b){if(a<b){a=b;return 1;}return 0;}
template<typename T>inline bool chmin(T& a,T b){if(a>b){a=b;return 1;}return 0;}
#line 2 "library/Utility/fastio.hpp"
#include <unistd.h>
class FastIO{
static constexpr int L=1<<16;
char rdbuf[L];
int rdLeft=0,rdRight=0;
inline void reload(){
int len=rdRight-rdLeft;
memmove(rdbuf,rdbuf+rdLeft,len);
rdLeft=0,rdRight=len;
rdRight+=fread(rdbuf+len,1,L-len,stdin);
}
inline bool skip(){
for(;;){
while(rdLeft!=rdRight and rdbuf[rdLeft]<=' ')rdLeft++;
if(rdLeft==rdRight){
reload();
if(rdLeft==rdRight)return false;
}
else break;
}
return true;
}
template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline bool _read(T& x){
if(!skip())return false;
if(rdLeft+20>=rdRight)reload();
bool neg=false;
if(rdbuf[rdLeft]=='-'){
neg=true;
rdLeft++;
}
x=0;
while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){
x=x*10+(neg?-(rdbuf[rdLeft++]^48):(rdbuf[rdLeft++]^48));
}
return true;
}
template<typename T,enable_if_t<is_floating_point<T>::value,int> =0>inline bool _read(T& x){
if(!skip())return false;
if(rdLeft+20>=rdRight)reload();
bool neg=false;
if(rdbuf[rdLeft]=='-'){
neg=true;
rdLeft++;
}
x=0;
while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){
x=x*10+(rdbuf[rdLeft++]^48);
}
if(rdbuf[rdLeft]!='.')return true;
rdLeft++;
T base=.1;
while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){
x+=base*(rdbuf[rdLeft++]^48);
base*=.1;
}
if(neg)x=-x;
return true;
}
inline bool _read(char& x){
if(!skip())return false;
if(rdLeft+1>=rdRight)reload();
x=rdbuf[rdLeft++];
return true;
}
inline bool _read(string& x){
if(!skip())return false;
for(;;){
int pos=rdLeft;
while(pos<rdRight and rdbuf[pos]>' ')pos++;
x.append(rdbuf+rdLeft,pos-rdLeft);
if(rdLeft==pos)break;
rdLeft=pos;
if(rdLeft==rdRight)reload();
else break;
}
return true;
}
template<typename T>inline bool _read(vector<T>& v){
for(auto& x:v){
if(!_read(x))return false;
}
return true;
}
char wtbuf[L],tmp[50];
int wtRight=0;
inline void flush(){
fwrite(wtbuf,1,wtRight,stdout);
wtRight=0;
}
inline void _write(const char& x){
if(wtRight>L-32)flush();
wtbuf[wtRight++]=x;
}
inline void _write(const string& x){
for(auto& c:x)_write(c);
}
template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline void _write(T x){
if(wtRight>L-32)flush();
if(x==0){
_write('0');
return;
}
else if(x<0){
_write('-');
if (__builtin_expect(x == std::numeric_limits<T>::min(), 0)) {
switch (sizeof(x)) {
case 2: _write("32768"); return;
case 4: _write("2147483648"); return;
case 8: _write("9223372036854775808"); return;
}
}
x=-x;
}
int pos=0;
while(x!=0){
tmp[pos++]=char((x%10)|48);
x/=10;
}
rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i];
wtRight+=pos;
}
template<typename T>inline void _write(const vector<T>& v){
rep(i,0,v.size()){
if(i)_write(' ');
_write(v[i]);
}
}
public:
FastIO(){}
~FastIO(){flush();}
inline void read(){}
template <typename Head, typename... Tail>inline void read(Head& head,Tail&... tail){
assert(_read(head));
read(tail...);
}
template<bool ln=true,bool space=false>inline void write(){if(ln)_write('\n');}
template <bool ln=true,bool space=false,typename Head, typename... Tail>inline void write(const Head& head,const Tail&... tail){
if(space)_write(' ');
_write(head);
write<ln,true>(tail...);
}
};
/**
* @brief Fast IO
*/
#line 3 "sol.cpp"
#line 2 "library/Math/modint.hpp"
template<int mod=1000000007>struct fp {
int v; static int get_mod(){return mod;}
int inv() const{
int tmp,a=v,b=mod,x=1,y=0;
while(b)tmp=a/b,a-=tmp*b,swap(a,b),x-=tmp*y,swap(x,y);
if(x<0){x+=mod;} return x;
}
fp(ll x=0){init(x%mod+mod);}
fp& init(ll x){v=(x<mod?x:x-mod); return *this;}
fp operator-()const{return fp()-*this;}
fp pow(ll t){assert(t>=0); fp res=1,b=*this; while(t){if(t&1)res*=b;b*=b;t>>=1;} return res;}
fp& operator+=(const fp& x){return init(v+x.v);}
fp& operator-=(const fp& x){return init(v+mod-x.v);}
fp& operator*=(const fp& x){v=ll(v)*x.v%mod; return *this;}
fp& operator/=(const fp& x){v=ll(v)*x.inv()%mod; return *this;}
fp operator+(const fp& x)const{return fp(*this)+=x;}
fp operator-(const fp& x)const{return fp(*this)-=x;}
fp operator*(const fp& x)const{return fp(*this)*=x;}
fp operator/(const fp& x)const{return fp(*this)/=x;}
bool operator==(const fp& x)const{return v==x.v;}
bool operator!=(const fp& x)const{return v!=x.v;}
friend istream& operator>>(istream& is,fp& x){return is>>x.v;}
friend ostream& operator<<(ostream& os,const fp& x){return os<<x.v;}
};
template<typename T>struct factorial {
vector<T> Fact,Finv,Inv;
factorial(int maxx){
Fact.resize(maxx); Finv.resize(maxx); Inv.resize(maxx);
Fact[0]=Fact[1]=Finv[0]=Finv[1]=Inv[1]=1;
rep(i,2,maxx){Fact[i]=Fact[i-1]*i;} Finv[maxx-1]=Fact[maxx-1].inv();
for(int i=maxx-1;i>=2;i--){Finv[i-1]=Finv[i]*i; Inv[i]=Finv[i]*Fact[i-1];}
}
T fact(int n,bool inv=0){if(n<0)return 0; return (inv?Finv[n]:Fact[n]);}
T inv(int n){if(n<0)return 0; return Inv[n];}
T nPr(int n,int r,bool inv=0){if(n<0||n<r||r<0)return 0; return fact(n,inv)*fact(n-r,inv^1);}
T nCr(int n,int r,bool inv=0){if(n<0||n<r||r<0)return 0; return fact(n,inv)*fact(r,inv^1)*fact(n-r,inv^1);}
T nHr(int n,int r,bool inv=0){return nCr(n+r-1,r,inv);}
};
/**
* @brief Modint
*/
#line 2 "library/Convolution/ntt.hpp"
template<typename T,unsigned p=3>struct NTT{
vector<T> rt,irt;
NTT(int lg=21){
unsigned m=T::get_mod()-1; T prt=p;
rt.resize(lg); irt.resize(lg);
rep(k,0,lg){
rt[k]=-prt.pow(m>>(k+2));
irt[k]=rt[k].inv();
}
}
void ntt(vector<T>& f,bool inv=0){
int n=f.size();
if(inv){
for(int m=1;m<n;m<<=1){ T w=1;
for(int s=0,t=0;s<n;s+=m*2){
for(int i=s,j=s+m;i<s+m;i++,j++){
auto x=f[i],y=f[j];
f[i]=x+y; f[j]=(x-y)*w;
} w*=irt[__builtin_ctz(++t)];
}
} T mul=T(n).inv(); rep(i,0,n)f[i]*=mul;
}else{
for(int m=n;m>>=1;){ T w=1;
for(int s=0,t=0;s<n;s+=m*2){
for(int i=s,j=s+m;i<s+m;i++,j++){
auto x=f[i],y=f[j]*w;
f[i]=x+y; f[j]=x-y;
} w*=rt[__builtin_ctz(++t)];
}
}
}
}
vector<T> mult(const vector<T>& a,const vector<T>& b,bool same=0){
if(a.empty() or b.empty())return vector<T>();
int n=a.size()+b.size()-1,m=1<<__lg(n*2-1);
vector<T> res(m); rep(i,0,a.size()){res[i]=a[i];} ntt(res);
if(same)rep(i,0,m)res[i]*=res[i];
else{
vector<T> c(m); rep(i,0,b.size())c[i]=b[i];
ntt(c); rep(i,0,m)res[i]*=c[i];
} ntt(res,1); res.resize(n); return res;
}
};
/**
* @brief Number Theoretic Transform
*/
#line 2 "library/FPS/fps.hpp"
template<typename T>struct Poly:vector<T>{
Poly(int n=0){this->assign(n,T());}
Poly(const vector<T>& f){this->assign(ALL(f));}
T eval(const T& x){
T res;
for(int i=this->size()-1;i>=0;i--)res*=x,res+=this->at(i);
return res;
}
Poly rev()const{Poly res=*this; reverse(ALL(res)); return res;}
void shrink(){while(!this->empty() and this->back()==0)this->pop_back();}
vector<T> mult(const vector<T>& a,const vector<T>& b,bool same=0)const{
if(a.empty() or b.empty())return vector<T>();
int n=a.size()+b.size()-1,m=1<<__lg(n*2-1);
vector<T> res(m);
rep(i,0,a.size())res[i]=a[i];
NTT(res,0);
if(same)rep(i,0,m)res[i]*=res[i];
else{
vector<T> c(m);
rep(i,0,b.size())c[i]=b[i];
NTT(c,0);
rep(i,0,m)res[i]*=c[i];
}
NTT(res,1);
res.resize(n);
return res;
}
Poly square()const{return Poly(mult(*this,*this,1));}
Poly operator-()const{return Poly()-*this;}
Poly operator+(const Poly& g)const{return Poly(*this)+=g;}
Poly operator+(const T& g)const{return Poly(*this)+=g;}
Poly operator-(const Poly& g)const{return Poly(*this)-=g;}
Poly operator-(const T& g)const{return Poly(*this)-=g;}
Poly operator*(const Poly& g)const{return Poly(*this)*=g;}
Poly operator*(const T& g)const{return Poly(*this)*=g;}
Poly operator/(const Poly& g)const{return Poly(*this)/=g;}
Poly operator%(const Poly& g)const{return Poly(*this)%=g;}
Poly& operator+=(const Poly& g){
if(g.size()>this->size())this->resize(g.size());
rep(i,0,g.size()){(*this)[i]+=g[i];} return *this;
}
Poly& operator+=(const T& g){
if(this->empty())this->push_back(0);
(*this)[0]+=g; return *this;
}
Poly& operator-=(const Poly& g){
if(g.size()>this->size())this->resize(g.size());
rep(i,0,g.size()){(*this)[i]-=g[i];} return *this;
}
Poly& operator-=(const T& g){
if(this->empty())this->push_back(0);
(*this)[0]-=g; return *this;
}
Poly& operator*=(const Poly& g){
*this=mult(*this,g,0);
return *this;
}
Poly& operator*=(const T& g){
rep(i,0,this->size())(*this)[i]*=g;
return *this;
}
Poly& operator/=(const Poly& g){
if(g.size()>this->size()){
this->clear(); return *this;
}
Poly g2=g;
reverse(ALL(*this));
reverse(ALL(g2));
int n=this->size()-g2.size()+1;
this->resize(n); g2.resize(n);
*this*=g2.inv(); this->resize(n);
reverse(ALL(*this));
shrink();
return *this;
}
Poly& operator%=(const Poly& g){*this-=*this/g*g; shrink(); return *this;}
Poly diff()const{
Poly res(this->size()-1);
rep(i,0,res.size())res[i]=(*this)[i+1]*(i+1);
return res;
}
Poly inte()const{
Poly res(this->size()+1);
for(int i=res.size()-1;i;i--)res[i]=(*this)[i-1]/i;
return res;
}
Poly log()const{
assert(this->front()==1); const int n=this->size();
Poly res=diff()*inv(); res=res.inte();
res.resize(n); return res;
}
Poly shift(const int& c)const{
const int n=this->size();
Poly res=*this,g(n); g[0]=1; rep(i,1,n)g[i]=g[i-1]*c/i;
vector<T> fact(n,1);
rep(i,0,n){
if(i)fact[i]=fact[i-1]*i;
res[i]*=fact[i];
}
res=res.rev();
res*=g;
res.resize(n);
res=res.rev();
rep(i,0,n)res[i]/=fact[i];
return res;
}
Poly inv()const{
const int n=this->size();
Poly res(1); res.front()=T(1)/this->front();
for(int k=1;k<n;k<<=1){
Poly f(k*2),g(k*2);
rep(i,0,min(n,k*2))f[i]=(*this)[i];
rep(i,0,k)g[i]=res[i];
NTT(f,0);
NTT(g,0);
rep(i,0,k*2)f[i]*=g[i];
NTT(f,1);
rep(i,0,k){f[i]=0; f[i+k]=-f[i+k];}
NTT(f,0);
rep(i,0,k*2)f[i]*=g[i];
NTT(f,1);
rep(i,0,k)f[i]=res[i];
swap(res,f);
} res.resize(n); return res;
}
Poly exp()const{
const int n=this->size();
if(n==1)return Poly({T(1)});
Poly b(2),c(1),z1,z2(2);
b[0]=c[0]=z2[0]=z2[1]=1; b[1]=(*this)[1];
for(int k=2;k<n;k<<=1){
Poly y=b;
y.resize(k*2);
NTT(y,0);
z1=z2;
Poly z(k);
rep(i,0,k)z[i]=y[i]*z1[i];
NTT(z,1);
rep(i,0,k>>1)z[i]=0;
NTT(z,0);
rep(i,0,k)z[i]*=-z1[i];
NTT(z,1);
c.insert(c.end(),z.begin()+(k>>1),z.end());
z2=c;
z2.resize(k*2);
NTT(z2,0);
Poly x=*this;
x.resize(k);
x=x.diff();x.resize(k);
NTT(x,0);
rep(i,0,k)x[i]*=y[i];
NTT(x,1);
Poly bb=b.diff();
rep(i,0,k-1)x[i]-=bb[i];
x.resize(k*2);
rep(i,0,k-1){x[k+i]=x[i]; x[i]=0;}
NTT(x,0);
rep(i,0,k*2)x[i]*=z2[i];
NTT(x,1);
x.pop_back();
x=x.inte();
rep(i,k,min(n,k*2))x[i]+=(*this)[i];
rep(i,0,k)x[i]=0;
NTT(x,0);
rep(i,0,k*2)x[i]*=y[i];
NTT(x,1);
b.insert(b.end(),x.begin()+k,x.end());
} b.resize(n); return b;
}
Poly pow(ll t){
if(t==0){
Poly res(this->size()); res[0]=1;
return res;
}
int n=this->size(),k=0; while(k<n and (*this)[k]==0)k++;
Poly res(n); if(__int128_t(t)*k>=n)return res;
n-=t*k; Poly g(n); T c=(*this)[k],ic=c.inv();
rep(i,0,n)g[i]=(*this)[i+k]*ic;
g=g.log(); for(auto& x:g)x*=t; g=g.exp();
c=c.pow(t); rep(i,0,n)res[i+t*k]=g[i]*c; return res;
}
void NTT(vector<T>& a,bool inv)const;
};
/**
* @brief Formal Power Series (NTT-friendly mod)
*/
#line 7 "sol.cpp"
using Fp=fp<998244353>;
NTT<Fp,3> ntt;
template<>void Poly<Fp>::NTT(vector<Fp>& v,bool inv)const{return ntt.ntt(v,inv);}
#line 2 "library/FPS/prodofpolys.hpp"
template<typename T>Poly<T> ProdOfPolys(vector<Poly<T>>& fs){
if(fs.empty())return Poly<T>({T(1)});
sort(ALL(fs),[&](Poly<T>& a,Poly<T>& b){return a.size()<b.size();});
deque<Poly<T>> deq;
for(auto& f:fs)deq.push_back(f);
while(deq.size()>1){
deq.push_back(deq[0]*deq[1]);
deq.pop_front();
deq.pop_front();
}
return deq[0];
}
/**
* @brief Product of Polynomials
*/
#line 12 "sol.cpp"
template<typename T>vector<T> EnumSumOfPower(vector<T>& a,int m){//1<=i<=m,sum_k a_k^i
int n=a.size();
vector<Poly<T>> fs(n);
rep(i,0,n)fs[i]=Poly<T>({T(1),T(-a[i])});
auto ret=ProdOfPolys(fs);
ret.resize(m+1);
return -ret.log().diff();
}
FastIO io;
int main(){
int n,m;
io.read(n,m);
vector<Fp> a(n);
rep(i,0,n)io.read(a[i].v);
auto ret=EnumSumOfPower(a,m);
vector<int> _;
for(auto& x:ret)_.push_back(x.v);
io.write(_);
return 0;
}
tko919