結果
| 問題 |
No.277 根掘り葉掘り
|
| コンテスト | |
| ユーザー |
srjywrdnprkt
|
| 提出日時 | 2022-12-31 07:17:06 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,341 bytes |
| コンパイル時間 | 1,044 ms |
| コンパイル使用メモリ | 111,024 KB |
| 最終ジャッジ日時 | 2025-02-09 22:22:59 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 10 WA * 8 |
ソースコード
#include <iostream>
#include <vector>
#include <cmath>
#include <map>
#include <set>
#include <iomanip>
#include <queue>
using namespace std;
template<typename S> struct Tree{
vector<vector<S>> E, par0;
vector<S> dist0;
S N, log=0;
Tree (const vector<vector<S>> &_E){
N = _E.size(); E = _E;
}
//fromを根とする木の各頂点の深さを求める
vector<S> depth (S from) {
vector<S> dist(N);
_depth(from, -1, dist);
return dist;
}
vector<S> org (S from) {
vector<S> dist(N);
_org(from, 1e9, dist);
return dist;
}
S _org (S from, S p, vector<S> &dist) {
S mi = 1e9;
for (auto to : E[from]){
if (to == p) continue;
mi = min(mi, _org(to, from, dist)+1);
}
if (mi == 1e9) mi = 0;
return dist[from] = mi;
}
void _depth(S from, S p, vector<S> &dist) {
for (auto to : E[from]){
if (to == p) continue;
dist[to] = dist[from]+1;
_depth(to, from, dist);
}
}
//木の二頂点(a, b)間の最短距離を求める
S dist(S a, S b){
S c = lca(a, b);
return dist0[a] + dist0[b]- 2*dist0[c];
}
//木の二頂点(a, b)のLCAを求める
S lca(S a, S b){
if (par0.size() == 0){
dist0 = depth(0);
_doubling();
}
if (dist0[a] < dist0[b]) swap(a, b);
for (S i=0; i<=log; i++){
if ((dist0[a]-dist0[b]) & (1LL<<i)) a = par0[i][a];
}
if (a == b) return a;
for (S i=log; i>=0; i--){
if (par0[i][a] != par0[i][b]){
a = par0[i][a];
b = par0[i][b];
}
}
return par0[0][a];
}
void _doubling(){
S cnt = 1;
while(cnt < N){
cnt *= 2;
log++;
}
par0.resize(log+1, vector<S>(N));
_ancestor(0, -1);
for (S i=1; i<=log; i++){
for (S j=0; j<N; j++){
if (par0[i-1][j] == -1) par0[i][j] = -1;
else par0[i][j] = par0[i-1][par0[i-1][j]];
}
}
}
void _ancestor(S from, S p){
par0[0][from] = p;
for (auto to : E[from]){
if (to == p) continue;
_ancestor(to, from);
}
}
//fromとgoalの最短経路上に含まれる点を全て求める
vector<S> shortest_path(S from, S goal) const{
vector<S> path, pt;
_shortest_path(from, goal, -1, pt, path);
return path;
}
void _shortest_path(S from, S goal, S p, vector<S> &pt, vector<S> &path) const{
pt.push_back(from);
if (from == goal) path = pt;
for (auto to : E[from]){
if (to == p) continue;
_shortest_path(to, goal, from, pt, path);
}
pt.pop_back();
}
//木の直径とその両端の点を求める
tuple<S, S, S> diameter() const{
S s=0, t=0, mx=0;
_diameter(s, -1, 0, mx, t);
s=t; t=0; mx=0;
_diameter(s, -1, 0, mx, t);
return make_tuple(s, t, mx);
}
void _diameter(S from, S p, S d, S &mx, S &argmx) const{
if (d > mx){
argmx = from; mx = d;
}
for (auto to : E[from]){
if (to == p) continue;
_diameter(to, from, d+1, mx, argmx);
}
}
//fromを根とする木の部分木のサイズを求める
vector<S> subtree_size(S from) const{
vector<S> subtree(N);
_subtree_size(from, -1, subtree);
return subtree;
}
S _subtree_size(S from, S p, vector<S> &subtree) const{
S cnt = 1;
for (auto to : E[from]){
if (to == p) continue;
cnt += _subtree_size(to, from, subtree);
}
return subtree[from] = cnt;
}
};
int main(){
long long N, A, B, Q;
cin >> N;
vector<vector<long long>> E(N);
for (int i=0; i < N-1; i++){
cin >> A >> B;
A--; B--;
E[A].push_back(B);
E[B].push_back(A);
}
Tree tree(E);
vector<long long> leaf, root;
leaf = tree.org(0);
root = tree.depth(0);
for (int i=0; i<N; i++){
cout << min(leaf[i], root[i]) << endl;
}
return 0;
}
srjywrdnprkt