結果
問題 | No.2166 Paint and Fill |
ユーザー | 👑 Nachia |
提出日時 | 2023-01-03 03:59:20 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3,084 ms / 10,000 ms |
コード長 | 35,336 bytes |
コンパイル時間 | 3,725 ms |
コンパイル使用メモリ | 155,052 KB |
実行使用メモリ | 448,804 KB |
最終ジャッジ日時 | 2024-11-27 01:37:07 |
合計ジャッジ時間 | 62,427 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1,023 ms
234,524 KB |
testcase_01 | AC | 143 ms
8,700 KB |
testcase_02 | AC | 1,831 ms
414,072 KB |
testcase_03 | AC | 1,002 ms
235,008 KB |
testcase_04 | AC | 997 ms
235,016 KB |
testcase_05 | AC | 997 ms
235,020 KB |
testcase_06 | AC | 1,000 ms
235,020 KB |
testcase_07 | AC | 1,001 ms
235,144 KB |
testcase_08 | AC | 1,203 ms
229,712 KB |
testcase_09 | AC | 1,242 ms
229,320 KB |
testcase_10 | AC | 1,181 ms
229,780 KB |
testcase_11 | AC | 1,186 ms
229,688 KB |
testcase_12 | AC | 1,182 ms
229,392 KB |
testcase_13 | AC | 3,049 ms
448,368 KB |
testcase_14 | AC | 3,084 ms
448,804 KB |
testcase_15 | AC | 3,045 ms
447,608 KB |
testcase_16 | AC | 3,043 ms
447,332 KB |
testcase_17 | AC | 3,030 ms
447,540 KB |
testcase_18 | AC | 2,570 ms
436,304 KB |
testcase_19 | AC | 2,564 ms
436,264 KB |
testcase_20 | AC | 2,708 ms
420,552 KB |
testcase_21 | AC | 2,613 ms
414,724 KB |
testcase_22 | AC | 2,317 ms
418,904 KB |
testcase_23 | AC | 2,369 ms
413,780 KB |
testcase_24 | AC | 2,368 ms
413,736 KB |
testcase_25 | AC | 2 ms
5,248 KB |
testcase_26 | AC | 2 ms
5,248 KB |
testcase_27 | AC | 571 ms
8,688 KB |
testcase_28 | AC | 690 ms
8,672 KB |
testcase_29 | AC | 604 ms
8,796 KB |
testcase_30 | AC | 694 ms
8,672 KB |
testcase_31 | AC | 695 ms
8,804 KB |
testcase_32 | AC | 696 ms
8,668 KB |
testcase_33 | AC | 709 ms
8,676 KB |
testcase_34 | AC | 711 ms
8,608 KB |
testcase_35 | AC | 697 ms
8,800 KB |
testcase_36 | AC | 697 ms
8,676 KB |
testcase_37 | AC | 694 ms
8,672 KB |
testcase_38 | AC | 692 ms
8,796 KB |
testcase_39 | AC | 692 ms
8,668 KB |
ソースコード
#line 2 "nachia\\fps\\formal-power-series-struct.hpp" #include <vector> #include <algorithm> #include <string> #include <cassert> #include <iostream> #line 3 "nachia\\math-modulo\\modulo-primitive-root.hpp" #include <utility> namespace nachia{ template<unsigned int MOD> struct PrimitiveRoot{ static constexpr unsigned long long powm(unsigned long long a, unsigned long long i) { unsigned long long res = 1, aa = a; while(i){ if(i & 1) res = res * aa % MOD; aa = aa * aa % MOD; i /= 2; } return res; } static constexpr bool ExamineVal(unsigned int g){ unsigned int t = MOD - 1; for(unsigned long long d=2; d*d<=t; d++) if(t % d == 0){ if(powm(g, (MOD - 1) / d) == 1) return false; while(t % d == 0) t /= d; } if(t != 1) if(powm(g, (MOD - 1) / t) == 1) return false; return true; } static constexpr unsigned int GetVal(){ for(unsigned int x=2; x<MOD; x++) if(ExamineVal(x)) return x; return 0; } static const unsigned int val = GetVal(); }; } // namespace nachia #line 3 "nachia\\math\\combination.hpp" namespace nachia{ template<class Modint> class Comb{ private: std::vector<Modint> F; std::vector<Modint> iF; public: void extend(int newN){ int prevN = (int)F.size() - 1; if(prevN >= newN) return; F.resize(newN+1); iF.resize(newN+1); for(int i=prevN+1; i<=newN; i++) F[i] = F[i-1] * Modint::raw(i); iF[newN] = F[newN].inv(); for(int i=newN; i>prevN; i--) iF[i-1] = iF[i] * Modint::raw(i); } Comb(int n = 1){ F.assign(2, Modint(1)); iF.assign(2, Modint(1)); extend(n); } Modint factorial(int n) const { return F[n]; } Modint invFactorial(int n) const { return iF[n]; } Modint invOf(int n) const { return iF[n] * F[n-1]; } Modint comb(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[r] * iF[n-r]; } Modint invComb(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[r] * F[n-r]; } Modint perm(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[n-r]; } Modint invPerm(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[n-r]; } Modint operator()(int n, int r) const { return comb(n,r); } }; } // namespace nachia #line 4 "nachia\\misc\\bit-operations.hpp" namespace nachia{ int Popcount(unsigned long long c) noexcept { #ifdef __GNUC__ return __builtin_popcountll(c); #else c = (c & (~0ull/3)) + ((c >> 1) & (~0ull/3)); c = (c & (~0ull/5)) + ((c >> 2) & (~0ull/5)); c = (c & (~0ull/17)) + ((c >> 4) & (~0ull/17)); c = (c * (~0ull/257)) >> 56; return c; #endif } // please ensure x != 0 int MsbIndex(unsigned long long x) noexcept { #ifdef __GNUC__ return 63 - __builtin_clzll(x); #else int res = 0; for(int d=32; d>0; d>>=1) if(x >> d){ res |= d; x >>= d; } return res; #endif } // please ensure x != 0 int LsbIndex(unsigned long long x) noexcept { #ifdef __GNUC__ return __builtin_ctzll(x); #else return MsbIndex(x & -x); #endif } } #line 2 "nachia\\fps\\ntt-interface.hpp" namespace nachia { template<class mint> struct NttInterface{ template<class Iter> void Butterfly(Iter, int) const {} template<class Iter> void IButterfly(Iter, int) const {} template<class Iter> void BitReversal(Iter a, int N) const { for(int i=0, j=0; j<N; j++){ if(i < j) std::swap(a[i], a[j]); for(int k = N>>1; k > (i^=k); k>>=1); } } }; } // namespace nachia #line 5 "nachia\\fps\\ntt-acl.hpp" #include <iterator> #line 8 "nachia\\fps\\ntt-acl.hpp" #include <array> namespace nachia{ constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } template <class mint> struct NttFromAcl : NttInterface<mint> { using u32 = unsigned int; using u64 = unsigned long long; static int ceil_pow2(int n) { int x = 0; while ((1U << x) < (u32)(n)) x++; return x; } struct fft_info { static constexpr u32 g = nachia::PrimitiveRoot<mint::mod()>::val; static constexpr int rank2 = bsf_constexpr(mint::mod()-1); std::array<mint, rank2+1> root; std::array<mint, rank2+1> iroot; std::array<mint, std::max(0, rank2-1)> rate2; std::array<mint, std::max(0, rank2-1)> irate2; std::array<mint, std::max(0, rank2-2)> rate3; std::array<mint, std::max(0, rank2-2)> irate3; fft_info(){ root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); iroot[rank2] = root[rank2].inv(); for(int i=rank2-1; i>=0; i--){ root[i] = root[i+1] * root[i+1]; iroot[i] = iroot[i+1] * iroot[i+1]; } mint prod = 1, iprod = 1; for(int i=0; i<=rank2-2; i++){ rate2[i] = root[i+2] * prod; irate2[i] = iroot[i+2] * iprod; prod *= iroot[i+2]; iprod *= root[i+2]; } prod = 1; iprod = 1; for(int i=0; i<=rank2-3; i++){ rate3[i] = root[i+3] * prod; irate3[i] = iroot[i+3] * iprod; prod *= iroot[i+3]; iprod *= root[i+3]; } } }; template<class RandomAccessIterator> void Butterfly(RandomAccessIterator a, int n) const { int h = ceil_pow2(n); static const fft_info info; int len = 0; while(len < h){ if(h-len == 1){ int p = 1 << (h-len-1); mint rot = 1; for(int s=0; s<(1<<len); s++){ int offset = s << (h-len); for(int i=0; i<p; i++){ auto l = a[i+offset]; auto r = a[i+offset+p] * rot; a[i+offset] = l+r; a[i+offset+p] = l-r; } if(s+1 != (1<<len)) rot *= info.rate2[LsbIndex(~(u32)(s))]; } len++; } else { int p = 1 << (h-len-2); mint rot = 1, imag = info.root[2]; for(int s=0; s<(1<<len); s++){ mint rot2 = rot * rot; mint rot3 = rot2 * rot; int offset = s << (h-len); for(int i=0; i<p; i++){ auto mod2 = 1ULL * mint::mod() * mint::mod(); auto a0 = 1ULL * a[i+offset].val(); auto a1 = 1ULL * a[i+offset+p].val() * rot.val(); auto a2 = 1ULL * a[i+offset+2*p].val() * rot2.val(); auto a3 = 1ULL * a[i+offset+3*p].val() * rot3.val(); auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val() * imag.val(); auto na2 = mod2 - a2; a[i+offset] = a0 + a2 + a1 + a3; a[i+offset+1*p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i+offset+2*p] = a0 + na2 + a1na3imag; a[i+offset+3*p] = a0 + na2 + (mod2 - a1na3imag); } if(s+1 != (1<<len)) rot *= info.rate3[LsbIndex(~(u32)(s))]; } len += 2; } } } template<class RandomAccessIterator> void IButterfly(RandomAccessIterator a, int n) const { int h = ceil_pow2(n); static const fft_info info; constexpr int MOD = mint::mod(); int len = h; while(len){ if(len == 1){ int p = 1 << (h-len); mint irot = 1; for(int s=0; s<(1<<(len-1)); s++){ int offset = s << (h-len+1); for(int i=0; i<p; i++){ auto l = a[i+offset]; auto r = a[i+offset+p]; a[i+offset] = l+r; a[i+offset+p] = (u64)(MOD + l.val() - r.val()) * irot.val(); } if(s+1 != (1<<(len-1))) irot *= info.irate2[LsbIndex(~(u32)(s))]; } len--; } else { int p = 1 << (h-len); mint irot = 1, iimag = info.iroot[2]; for(int s=0; s<(1<<(len-2)); s++){ mint irot2 = irot * irot; mint irot3 = irot2 * irot; int offset = s << (h-len+2); for(int i=0; i<p; i++){ auto a0 = 1ULL * a[i+offset+0*p].val(); auto a1 = 1ULL * a[i+offset+1*p].val(); auto a2 = 1ULL * a[i+offset+2*p].val(); auto a3 = 1ULL * a[i+offset+3*p].val(); auto a2na3iimag = 1ULL * mint((MOD + a2 - a3) * iimag.val()).val(); a[i+offset] = a0 + a1 + a2 + a3; a[i+offset+1*p] = (a0 + (MOD - a1) + a2na3iimag) * irot.val(); a[i+offset+2*p] = (a0 + a1 + (MOD - a2) + (MOD - a3)) * irot2.val(); a[i+offset+3*p] = (a0 + (MOD - a1) + (MOD - a2na3iimag)) * irot3.val(); } if(s+1 != (1<<(len-2))) irot *= info.irate3[LsbIndex(~(u32)(s))]; } len -= 2; } } } }; } // namespace nachia #line 11 "nachia\\fps\\formal-power-series-struct.hpp" namespace nachia { template<class Elem, class NttInst = NttFromAcl<Elem>> struct FormalPowerSeriesNTT { public: using Fps = FormalPowerSeriesNTT; using ElemTy = Elem; static constexpr unsigned int MOD = Elem::mod(); static constexpr int CONV_THRES = 30; static const NttInst nttInst; static const unsigned int zeta = nachia::PrimitiveRoot<MOD>::GetVal(); private: using u32 = unsigned int; static Elem ZeroElem() noexcept { return Elem(0); } static Elem OneElem() noexcept { return Elem(1); } static Comb<Elem> comb; std::vector<Elem> a; public: int size() const noexcept { return a.size(); } Elem& operator[](int x) noexcept { return a[x]; } const Elem& operator[](int x) const noexcept { return a[x]; } Elem getCoeff(int x) const noexcept { return (0 <= x && x < size()) ? a[x] : ZeroElem(); } static Comb<Elem>& GetComb() { return comb; } static int BestNttSize(int x) noexcept { assert(x); return 1 << MsbIndex(x*2-1); } Fps move(){ return std::move(*this); } Fps& set(int i, Elem c){ a[i] = c; return *this; } Fps& removeLeadingZeros(){ int newsz = size(); while(newsz && a[newsz-1].val() == 0) newsz--; a.resize(newsz); if((int)a.capacity() / 4 > newsz) a.shrink_to_fit(); return *this; } FormalPowerSeriesNTT(){} FormalPowerSeriesNTT(int sz) : a(sz, ZeroElem()) {} FormalPowerSeriesNTT(std::vector<Elem>&& src) : a(std::move(src)) {} FormalPowerSeriesNTT(const std::vector<Elem>& src) : a(src) {} Fps& ntt() { capSize(BestNttSize(size())); nttInst.Butterfly(a.begin(), size()); return *this; } Fps& intt() { nttInst.IButterfly(a.begin(), a.size()); return times(Elem::raw(size()).inv()); } Fps nttDouble(Fps vanilla) const { int n = size(); assert(n == (n&-n)); // n is a power of 2 Elem q = Elem::raw(zeta).pow((Elem::mod() - 1) / (n*2)); Elem qq = Elem::raw(1); for(int i=0; i<n; i++){ vanilla[i] *= qq; qq *= q; } vanilla.ntt(); Fps res = clip(0, n*2); for(int i=0; i<n; i++) res[n+i] = vanilla[i]; return res; } Fps nttDouble() const { return nttDouble(clip().intt().move()); } // Fps res(resSz); // for(int j=0; j<resSz-destL && j+srcL < srcR; j++) res[j+destL] = a.getCoeff(j+srcL) // if srcR is unspecified -> srcR = max(srcL, size()); // if resSz is unspecified -> resSz = destL + srcR - srcL Fps clip(int srcL, int srcR = -1, int destL = 0, int resSz = -1) const { if(srcR < 0) srcR = std::max(srcL, size()); if(resSz < 0) resSz = destL + srcR - srcL; if(srcR > size()) srcR = size(); Fps res(resSz); for(int j=std::max(0, -srcL); j+destL < resSz && j+srcL < srcR; j++) res[j+destL] = a[j+srcL]; return res; } Fps clip() const { return *this; } Fps& capSize(int l, int r) { if(r <= (int)size()) a.resize(r); if(size() <= l) a.resize(l, ZeroElem()); return *this; } Fps& capSize(int z){ a.resize(z, ZeroElem()); return *this; } Fps& times(Elem x){ for(int i=0; i<size(); i++){ a[i] *= x; } return *this; } Fps& clrRange(int l, int r){ for(int i=l; i<r; i++){ a[i] = ZeroElem(); } return *this; } Fps& negate(){ for(auto& e : a){ e = -e; } return *this; } Fps& mulEach(const Fps& other, size_t maxi = ~(size_t)0){ maxi = std::min(maxi, (size_t)std::min(size(), other.size())); for(size_t i=0; i<maxi; i++) a[i] *= other[i]; return *this; } Fps& reverse(){ std::reverse(a.begin(), a.end()); return *this; } static Fps convolution(const Fps& a, const Fps& b, int sz = -1){ if(std::min(a.size(), b.size()) <= CONV_THRES){ if(a.size() > b.size()) return convolution(b, a, sz); if(sz < 0) sz = std::max(0, a.size() + b.size() - 1); std::vector<Elem> res(sz); for(int i=0; i<a.size(); i++) for(int j=0; j<b.size() && i+j<sz; j++) res[i+j] += a[i] * b[j]; return res; } int Z = BestNttSize(a.size() + b.size() - 1); if(sz == -1) sz = Z; return a.clip(0, Z).ntt().mulEach(b.clip(0, Z).ntt()).intt().capSize(sz).move(); } Fps convolve(const Fps& r, int sz = -1) const { return convolution(*this, r, sz); } // 1 // ----- = 1 + f + f^2 + f^3 + ... // 1-f Fps powerSum(int sz) const { if(sz < 0) sz = size(); if(sz == 0) return {}; int q = std::min(sz, 32); Fps x = Fps(q).set(0, OneElem()).move(); for(int i=1; i<q; i++) for(int j=1; j<=std::min(i,(int)a.size()-1); j++) x[i] += x[i-j] * a[j]; while(x.size() < sz){ int hN = x.size(), N = hN*2; Fps a = x.clip(0, hN, 0, N).ntt().move(); Fps b = clip(0, N).ntt().mulEach(a).intt().clrRange(0,hN).ntt().mulEach(a).intt().move(); for(int i=0; i<hN; i++) b[i] = x[i]; std::swap(b, x); } return x.capSize(sz).move(); } Fps inv(int sz = -1) const { if(sz < 0) sz = size(); Elem iA0 = a[0].inv(); return clip(0, std::min(sz, size())).times(-iA0).move().set(0, ZeroElem()).powerSum(sz).times(iA0).move(); } Fps& difference(){ if(size() == 0) return *this; for(int i=0; i+1<size(); i++) a[i] = a[i+1] * Elem::raw(i+1); capSize(0, size()-1); return *this; } Fps& integral(){ if(size() == 0) return capSize(1); capSize(size()+1); comb.extend(size()); for(int i=size()-1; i>=1; i--) a[i] = a[i-1] * comb.invOf(i); return set(0, ZeroElem()); } Fps log(int sz = -1){ if(sz < 0) sz = size(); assert(sz != 0); assert(a[0].val() == 1); return convolution(inv(sz), clip().difference(), sz-1).integral(); } Fps exp(int sz = -1){ if(sz < 0) sz = size(); Fps res = Fps(1).set(0, OneElem()); while(res.size() < sz){ auto z = res.size(); auto tmp = res.capSize(z*2).log().set(0, -OneElem()).move(); for(int i=0; i<z*2 && i<size(); i++) tmp[i] -= a[i]; auto resntt = res.clip().ntt().mulEach(tmp.ntt()).intt().move(); for(int i=z; i<z*2; i++) res[i] = -resntt[i]; } return res.capSize(0, sz).move(); } Fps pow(unsigned long long k, int sz = -1){ int n = sz < 0 ? size() : sz; if(k == 0) return Fps(n).set(0, OneElem()).move(); int ctz = 0; while(ctz<n && a[ctz].val() == 0) ctz++; if((unsigned long long)ctz >= (n-1) / k + 1) return Fps(n); Fps res = clip(ctz, ctz+n-ctz*k); Elem a0 = res[0]; ctz *= k; n -= ctz; return res.times(a0.inv()).log(n).times(Elem(k)).exp(n).times(a0.pow(k)).clip(0, n, ctz); } auto begin(){ return a.begin(); } auto end(){ return a.end(); } auto begin() const { return a.begin(); } auto end() const { return a.end(); } std::string toString(std::string beg = "[ ", std::string delim = " ", std::string en = " ]") const { std::string res = beg; bool f = false; for(auto x : a){ if(f){ res += delim; } f = true; res += std::to_string(x.val()); } res += en; return res; } std::vector<Elem> getVectorMoved(){ return std::move(a); } Fps& operator+=(const Fps& r){ capSize(std::max(size(), r.size())); for(int i=0; i<r.size(); i++) a[i] += r[i]; return *this; } Fps& operator-=(const Fps& r){ capSize(std::max(size(), r.size())); for(int i=0; i<r.size(); i++) a[i] -= r[i]; return *this; } Fps operator+(const Fps& r) const { return (clip(0, std::max(size(), r.size())) += r).move(); } Fps operator-(const Fps& r) const { return (clip(0, std::max(size(), r.size())) -= r).move(); } Fps operator-() const { return (clip().negate()).move(); } Fps operator*(const Fps& r) const { return convolve(r).removeLeadingZeros().move(); } Fps& operator*=(const Fps& r){ return (*this) = operator*(r); } Fps& operator*=(Elem m){ return times(m); } Fps operator*(Elem m) const { return (clip() *= m).move(); } Elem eval(Elem x) const { Elem res = 0; for(int i=size()-1; i>=0; i--) res = res * x + a[i]; return res; } }; template<class Elem, class NttInst> Comb<Elem> FormalPowerSeriesNTT<Elem, NttInst>::comb; template<class Elem, class NttInst> const NttInst FormalPowerSeriesNTT<Elem, NttInst>::nttInst; } // namespace nachia #line 5 "nachia\\linear\\matrix-on-ring.hpp" namespace nachia{ template<class Elem> struct MatrixOnRing{ private: int h; int w; std::vector<Elem> elems; public: MatrixOnRing(int new_h=0, int new_w=0){ h = new_h; w = new_w; elems.resize(h * w); } MatrixOnRing(MatrixOnRing const&) = default; int numRow() const { return h; } int numColumn() const { return w; } int height() const { return numRow(); } int width() const { return numColumn(); } typename std::vector<Elem>::iterator operator[](int y){ return elems.begin() + (y*w); } typename std::vector<Elem>::const_iterator operator[](int y) const { return elems.begin() + (y*w); } static MatrixOnRing Identity(int idx, Elem One){ auto res = MatrixOnRing(idx, idx); for(int i=0; i<idx; i++) res[i][i] = One; return res; } void swapColumns(int x1, int x2){ assert(0 <= x1 && x1 < numColumn()); assert(0 <= x2 && x2 < numColumn()); for(int y=0; y<numRow(); y++) std::swap((*this)[y][x1], (*this)[y][x2]); } void swapRows(int y1, int y2){ assert(0 <= y1 && y1 < numRow()); assert(0 <= y2 && y2 < numRow()); for(int x=0; x<numColumn(); x++) std::swap((*this)[y1][x], (*this)[y2][x]); } MatrixOnRing operator*(const MatrixOnRing& r) const { assert(width() == r.height()); auto res = MatrixOnRing(h, r.w); for(int i=0; i<h; i++) for(int j=0; j<w; j++) for(int k=0; k<r.w; k++) res[i][k] = res[i][k] + (*this)[i][j] * r[j][k]; return res; } MatrixOnRing pow(unsigned long long i){ auto a = *this; auto res = Identity(height()); while(i){ if(i % 2 == 1) res = res * a; a = a * a; i /= 2; } return res; } }; } // namespace nachia #line 4 "nachia\\fps\\p-recursive-matrix-product.hpp" namespace nachia{ template<class Elem> MatrixOnRing<Elem> PRecursiveMatrixProduct( MatrixOnRing<FormalPowerSeriesNTT<Elem>> p, unsigned long long idx ){ struct ShiftOfSamplingPointsOfPolynomialUpdate{ using Fps = FormalPowerSeriesNTT<Elem>; int n; int N2; Fps iF, F, iFI, iFIntt1, iFntt; std::vector<Fps> iFIntt2s; ShiftOfSamplingPointsOfPolynomialUpdate(int n, std::vector<Elem> sh){ auto& comb = Fps::GetComb(); comb.extend(n); this->n = n; N2 = Fps::BestNttSize(n*2); iF = F = iFI = Fps(n); for(int i=0; i<n; i++) F[i] = comb.factorial(i); for(int i=0; i<n; i++) iF[i] = comb.invFactorial(i); for(int i=0; i<n; i++) iFI[i] = (i%2) ? -iF[i] : iF[i]; iFIntt1 = iFI.clip(0, N2); iFIntt1.ntt(); iFntt = iF.clip(0, N2); iFntt.ntt(); for(size_t shi=0; shi<sh.size(); shi++){ Elem q = 1; Fps T(N2); T[0] = Elem(1); for(int i=1; i<n; i++) T[i] = iF[i] * (q *= (sh[shi] - Elem::raw(i-1))); iFIntt2s.push_back(T.ntt().move()); } } std::vector<std::vector<Elem>> calc(const std::vector<Elem>& points){ Fps P(N2); for(int i=0; i<n; i++) P[i] = points[i] * iF[i]; P.ntt().mulEach(iFIntt1).intt().clrRange(n, N2).mulEach(F, n).reverse().ntt(); std::vector<std::vector<Elem>> res2(iFIntt2s.size()); for(size_t shi=0; shi<iFIntt2s.size(); shi++){ res2[shi] = P.clip().mulEach(iFIntt2s[shi]).intt() .reverse().clrRange(n, N2).mulEach(iF, n).ntt() .mulEach(iFntt).intt().mulEach(F, n).clip(0, n).getVectorMoved(); } return res2; } }; using u64 = unsigned long long; int h = p.height(); std::vector<std::vector<Elem>> res; res.resize(h*h); for(auto& a : res) a.resize(h); u64 a = 1, b = 1; for(int i=0; i<h; i++) for(int j=0; j<h; j++) while(b < (u64)p[i][j].size()) b <<= 1; u64 maxA = 1, maxB = b; while(maxA * maxB <= idx){ maxB <<= 1; maxA <<= 1; } for(int i=0; i<h; i++) for(int j=0; j<h; j++){ res[i*h+j].resize(b); for(u64 k=0; k<b; k++) res[i*h+j][k] = p[i][j].eval(Elem(maxA) * Elem(k)); } auto EvalP = [p, h](Elem val) -> MatrixOnRing<Elem> { MatrixOnRing<Elem> res(h, h); for(int y=0; y<h; y++) for(int x=0; x<h; x++) res[y][x] = p[y][x].eval(val); return res; }; auto EvalL = [&res, h](u64 idx) -> MatrixOnRing<Elem> { MatrixOnRing<Elem> g(h, h); for(int y=0; y<h; y++) for(int x=0; x<h; x++) g[y][x] = res[y*h+x][idx]; return g; }; while(b < maxB){ std::vector<Elem> sh(3); sh[0] = Elem(b); sh[1] = Elem(a) / Elem(maxA); sh[2] = sh[0] + sh[1]; std::vector<std::vector<std::vector<Elem>>> shbuf(h*h); auto shman = ShiftOfSamplingPointsOfPolynomialUpdate(b, sh); for(int i=0; i<h*h; i++) shbuf[i] = shman.calc(res[i]); std::vector<std::vector<Elem>> resbuf; resbuf.assign(h*h, std::vector<Elem>(b*2)); for(int i=0; i<h; i++) for(int j=0; j<h; j++) for(int k=0; k<h; k++){ auto Lbeg1 = shbuf[i*h+j][1].begin(); auto Rbeg1 = res[j*h+k].begin(); auto destbeg1 = resbuf[i*h+k].begin(); for(u64 id=0; id<b; id++) destbeg1[id] += Lbeg1[id] * Rbeg1[id]; auto Lbeg2 = shbuf[i*h+j][2].begin(); auto Rbeg2 = shbuf[j*h+k][0].begin(); auto destbeg2 = resbuf[i*h+k].begin() + b; for(u64 id=0; id<b; id++) destbeg2[id] += Lbeg2[id] * Rbeg2[id]; } std::swap(res, resbuf); a *= 2; b *= 2; } u64 pos = 0; MatrixOnRing<Elem> ans = MatrixOnRing<Elem>::Identity(h, Elem::raw(1)); while(pos + maxA <= idx){ ans = EvalL(pos / maxA) * ans; pos += maxA; } while(pos < idx){ ans = EvalP(pos++) * ans; } return ans; } } // namespace nachia #line 2 "nachia\\fps\\ntt-setup-manager.hpp" namespace nachia{ template<class Elem> class FpsNttSetupManager { using ElemTy = Elem; using Fps = typename nachia::FormalPowerSeriesNTT<Elem>; using MyType = FpsNttSetupManager; Fps raw; mutable Fps ntt; static const int THRESH = 30; FpsNttSetupManager(Fps _raw) : raw(_raw.move()) , ntt() {} public: FpsNttSetupManager() : FpsNttSetupManager(Fps()) {} FpsNttSetupManager(Fps _raw, Fps _ntt) : raw(_raw.move()) , ntt(_ntt.move()) {} const Fps& getRaw() const { return raw; } int size() const { return raw.size(); } int Least(){ return Fps::BestNttSize(raw.size()); } static MyType FromRaw(Fps _raw){ return FpsNttSetupManager(_raw.move()); } static MyType FromNtt(Fps _ntt){ Fps x = _ntt.clip(); return MyType(x.intt().removeLeadingZeros().move(), _ntt.move()); } void doubling() const { if(ntt.size() == 0) ntt = raw.clip(0, Fps::BestNttSize(raw.size())).ntt().move(); else ntt = ntt.nttDouble(raw.clip(0, ntt.size())); } Fps& ensureNtt(int sz) const { if(sz / 8 >= ntt.size()) ntt = raw.clip(0, sz).ntt().move(); while(ntt.size() < sz) doubling(); return ntt; } Fps nttClip(int sz) const { return ensureNtt(sz).clip(0,sz); } std::pair<Fps, Fps> destruct(){ return std::make_pair(raw.move(), ntt.move()); } MyType operator+(const MyType& r) const { Fps nntt; int z1 = std::min(ntt.size(), r.ntt.size()); if(z1 >= std::max(size(), r.size())){ nntt.capSize(std::min(ntt.size(), r.ntt.size())); for(int i=0; i<nntt.size(); i++) nntt[i] = ntt[i] + r.ntt[i]; } return FpsNttSetupManager(raw + r.raw, nntt.move()); } MyType operator*(const MyType& r) const { if(std::min(size(), r.size()) <= THRESH) return FromRaw(raw * r.raw); int sz = Fps::BestNttSize(size() + r.size() - 1); return FromNtt(nttClip(sz).mulEach(r.ensureNtt(sz)).move()); } }; } // namespace nachia #line 2 "nachia\\misc\\fastio.hpp" #include <cstdio> #include <cctype> #include <cstdint> #line 6 "nachia\\misc\\fastio.hpp" namespace nachia{ struct CInStream{ private: static const unsigned int INPUT_BUF_SIZE = 1 << 17; unsigned int p = INPUT_BUF_SIZE; static char Q[INPUT_BUF_SIZE]; public: using MyType = CInStream; char seekChar() noexcept { if(p == INPUT_BUF_SIZE){ size_t len = fread(Q, 1, INPUT_BUF_SIZE, stdin); if(len != INPUT_BUF_SIZE) Q[len] = '\0'; p = 0; } return Q[p]; } void skipSpace() noexcept { while(isspace(seekChar())) p++; } uint32_t nextU32() noexcept { skipSpace(); uint32_t buf = 0; while(true){ char tmp = seekChar(); if('9' < tmp || tmp < '0') break; buf = buf * 10 + (tmp - '0'); p++; } return buf; } int32_t nextI32() noexcept { skipSpace(); if(seekChar() == '-'){ p++; return (int32_t)(-nextU32()); } return (int32_t)nextU32(); } uint64_t nextU64() noexcept { skipSpace(); uint64_t buf = 0; while(true){ char tmp = seekChar(); if('9' < tmp || tmp < '0') break; buf = buf * 10 + (tmp - '0'); p++; } return buf; } int64_t nextI64() noexcept { skipSpace(); if(seekChar() == '-'){ p++; return (int64_t)(-nextU64()); } return (int64_t)nextU64(); } char nextChar() noexcept { skipSpace(); char buf = seekChar(); p++; return buf; } std::string nextToken(){ skipSpace(); std::string buf; while(true){ char ch = seekChar(); if(isspace(ch) || ch == '\0') break; buf.push_back(ch); p++; } return buf; } MyType& operator>>(unsigned int& dest) noexcept { dest = nextU32(); return *this; } MyType& operator>>(int& dest) noexcept { dest = nextI32(); return *this; } MyType& operator>>(unsigned long& dest) noexcept { dest = nextU64(); return *this; } MyType& operator>>(long& dest) noexcept { dest = nextI64(); return *this; } MyType& operator>>(unsigned long long& dest) noexcept { dest = nextU64(); return *this; } MyType& operator>>(long long& dest) noexcept { dest = nextI64(); return *this; } MyType& operator>>(std::string& dest){ dest = nextToken(); return *this; } MyType& operator>>(char& dest) noexcept { dest = nextChar(); return *this; } } cin; struct FastOutputTable{ char LZ[1000][4] = {}; char NLZ[1000][4] = {}; constexpr FastOutputTable(){ using u32 = uint_fast32_t; for(u32 d=0; d<1000; d++){ LZ[d][0] = ('0' + d / 100 % 10); LZ[d][1] = ('0' + d / 10 % 10); LZ[d][2] = ('0' + d / 1 % 10); LZ[d][3] = '\0'; } for(u32 d=0; d<1000; d++){ u32 i = 0; if(d >= 100) NLZ[d][i++] = ('0' + d / 100 % 10); if(d >= 10) NLZ[d][i++] = ('0' + d / 10 % 10); if(d >= 1) NLZ[d][i++] = ('0' + d / 1 % 10); NLZ[d][i++] = '\0'; } } }; struct COutStream{ private: using u32 = uint32_t; using u64 = uint64_t; using MyType = COutStream; static const u32 OUTPUT_BUF_SIZE = 1 << 17; static char Q[OUTPUT_BUF_SIZE]; static constexpr FastOutputTable TB = FastOutputTable(); u32 p = 0; static constexpr u32 P10(u32 d){ return d ? P10(d-1)*10 : 1; } static constexpr u64 P10L(u32 d){ return d ? P10L(d-1)*10 : 1; } template<class T, class U> static void Fil(T& m, U& l, U x) noexcept { m = l/x; l -= m*x; } void next_dig9(u32 x){ u32 y; Fil(y, x, P10(6)); nextCstr(TB.LZ[y]); Fil(y, x, P10(3)); nextCstr(TB.LZ[y]); nextCstr(TB.LZ[x]); } public: void nextChar(char c){ Q[p++] = c; if(p == OUTPUT_BUF_SIZE){ fwrite(Q, p, 1, stdout); p = 0; } } void nextEoln(){ nextChar('\n'); } void nextCstr(const char* s){ while(*s) nextChar(*(s++)); } void nextU32(uint32_t x){ u32 y = 0; if(x >= P10(9)){ Fil(y, x, P10(9)); nextCstr(TB.NLZ[y]); next_dig9(x); } else if(x >= P10(6)){ Fil(y, x, P10(6)); nextCstr(TB.NLZ[y]); Fil(y, x, P10(3)); nextCstr(TB.LZ[y]); nextCstr(TB.LZ[x]); } else if(x >= P10(3)){ Fil(y, x, P10(3)); nextCstr(TB.NLZ[y]); nextCstr(TB.LZ[x]); } else if(x >= 1) nextCstr(TB.NLZ[x]); else nextChar('0'); } void nextI32(int32_t x){ if(x >= 0) nextU32(x); else{ nextChar('-'); nextU32((u32)-x); } } void nextU64(uint64_t x){ u32 y = 0; if(x >= P10L(18)){ Fil(y, x, P10L(18)); nextU32(y); Fil(y, x, P10L(9)); next_dig9(y); next_dig9(x); } else if(x >= P10L(9)){ Fil(y, x, P10L(9)); nextU32(y); next_dig9(x); } else nextU32(x); } void nextI64(int64_t x){ if(x >= 0) nextU64(x); else{ nextChar('-'); nextU64((u64)-x); } } void writeToFile(bool flush = false){ fwrite(Q, p, 1, stdout); if(flush) fflush(stdout); p = 0; } COutStream(){ Q[0] = 0; } ~COutStream(){ writeToFile(); } MyType& operator<<(unsigned int tg){ nextU32(tg); return *this; } MyType& operator<<(unsigned long tg){ nextU64(tg); return *this; } MyType& operator<<(unsigned long long tg){ nextU64(tg); return *this; } MyType& operator<<(int tg){ nextI32(tg); return *this; } MyType& operator<<(long tg){ nextI64(tg); return *this; } MyType& operator<<(long long tg){ nextI64(tg); return *this; } MyType& operator<<(const std::string& tg){ nextCstr(tg.c_str()); return *this; } MyType& operator<<(const char* tg){ nextCstr(tg); return *this; } MyType& operator<<(char tg){ nextChar(tg); return *this; } } cout; char CInStream::Q[INPUT_BUF_SIZE]; char COutStream::Q[OUTPUT_BUF_SIZE]; } // namespace nachia #line 5 "Main.cpp" #include <atcoder/modint> #line 7 "Main.cpp" int main(){ using Modint = atcoder::static_modint<998244353>; using Polynomial = nachia::FormalPowerSeriesNTT<Modint>; using PolynomialMat = nachia::MatrixOnRing<Polynomial>; using NttSetup = nachia::FpsNttSetupManager<Modint>; using NttSetupMat = nachia::MatrixOnRing<NttSetup>; using nachia::cin, nachia::cout; auto MatMod = [&](NttSetupMat mat, NttSetup mod) -> NttSetupMat { int n = mat.height(); NttSetupMat res(n, n); int maxlen = 0; for(int i=0; i<n; i++) for(int j=0; j<n; j++) maxlen = std::max(maxlen, mat[i][j].size()); int deg = mod.size(); if(maxlen < deg) return mat; auto K = mod.getRaw().clip().reverse().inv(maxlen - deg + 1); for(int i=0; i<n; i++) for(int j=0; j<n; j++){ auto buf = mat[i][j]; if(buf.size() < mod.size()){ res[i][j] = std::move(buf); continue; } int divlen = buf.size() + 1 - deg; auto div = std::move(buf.getRaw().clip(deg-1).reverse().convolve(K.clip(0, divlen), divlen).reverse()); res[i][j] = NttSetup::FromRaw((mat[i][j].getRaw() - (NttSetup::FromRaw(div) * mod).getRaw()).clip(0, deg-1)); } return res; }; int T; cin >> T; if(T <= 5){ for(int t=0; t<T; t++){ unsigned long long N, K; cin >> N >> K; if(K >= 998244353){ cout << "0\n"; continue; } PolynomialMat M_nX = PolynomialMat(2,2); M_nX[0][0] = std::vector<Modint>{ Modint(N) * 2 , -Modint(2) }; // 2N - 2k M_nX[0][1] = std::vector<Modint>{ 0, (Modint(N)*2+1) / 2, -Modint(1) / 2 }; // (2N+1)k/2 - k^2/2 M_nX[1][0] = std::vector<Modint>{ 1 }; M_nX[1][1] = std::vector<Modint>{}; auto ansMat = nachia::PRecursiveMatrixProduct(M_nX, K); Modint ans = ansMat[0][0]; cout << ans.val() << '\n'; } } else{ int MAX_K = 100000; int MATRIX_QUERY = 1001001001; std::vector<std::pair<unsigned long long, int>> NK(T); for(auto& nk : NK) cin >> nk.first >> nk.second; std::vector<std::pair<int, int>> queries; for(int k=0; k<MAX_K; k++) queries.emplace_back(k, MATRIX_QUERY); for(int t=0; t<T; t++) queries.emplace_back(NK[t].second, t); std::sort(queries.begin(), queries.end()); int segN = 1; while(segN < (int)queries.size()) segN *= 2; auto ConstructNttSetup = [](std::vector<Modint> x){ return NttSetup::FromRaw(x); }; std::vector<NttSetupMat> FX; std::vector<NttSetup> KX; FX.assign(segN*2, NttSetupMat::Identity(2, ConstructNttSetup({1}))); KX.assign(segN*2, ConstructNttSetup({1})); for(int q=0; q<(int)queries.size(); q++){ if(queries[q].second == MATRIX_QUERY){ int k = queries[q].first; FX[segN+q][0][0] = ConstructNttSetup({ -Modint(k)*2, Modint(2) }); // 2N - 2k FX[segN+q][0][1] = ConstructNttSetup({ Modint(k)*(1-k) / 2, Modint(k) }); // Nk + k(1-k)/2 FX[segN+q][1][0] = ConstructNttSetup({ 1 }); FX[segN+q][1][1] = ConstructNttSetup({}); } else{ unsigned long long N = NK[queries[q].second].first; KX[segN+q] = ConstructNttSetup({ -Modint(N), 1 }); // x - N } } for(int i=segN-1; i>=1; i--) FX[i] = FX[i*2+1] * FX[i*2]; for(int i=segN-1; i>=1; i--) KX[i] = KX[i*2+1] * KX[i*2]; std::vector<NttSetupMat> FXmodKX(segN*2); FXmodKX[1] = MatMod(NttSetupMat::Identity(2, ConstructNttSetup({1})), std::move(KX[1])); for(int i=1; i<=segN-1; i++){ FXmodKX[i*2+1] = MatMod(FX[i*2] * FXmodKX[i], std::move(KX[i*2+1])); FXmodKX[i*2] = MatMod(std::move(FXmodKX[i]), std::move(KX[i*2])); } std::vector<Modint> ans(T); for(int q=0; q<(int)queries.size(); q++){ if(queries[q].second != MATRIX_QUERY){ ans[queries[q].second] = FXmodKX[segN+q][0][0].getRaw().eval(0); } } for(int i=0; i<T; i++) cout << ans[i].val() << '\n'; } return 0; }